Category: bitcoin

Jun 13 2018

Threat Report: Don’t Join Blockchain Revolution Without Ensuring Security

On May 19 researchers discovered a series of vulnerabilities in the blockchain-based EOS platform that can lead to remote control over participating nodes. Just four days prior, a mining pool server for the IOT platform HDAC was compromised, impacting the vast majority of miners. In January the largest-ever theft of cryptocurrencies occurred against the exchange Coincheck, resulting in the loss of US$532 million in NEM coin. Due to its increased popularity and profitability cybercriminals have been targeting all things blockchain. McAfee Advanced Threat Research team analysts have now published the McAfee Blockchain Threat Report to explain current threats against the users and implementers of blockchain technologies.

What is Blockchain?

Even if you have not heard of blockchain, you have likely heard of cryptocurrencies, namely Bitcoin, the most popular implementation. In late 2017 Bitcoin reached a value of $20,000 per coin, prompting a lot of interest in the currency—including from cybercriminals. Cryptocurrencies are built on top of blockchain, which records transactions in a decentralized way and enables a trusted “ledger” between trustless participants. Each block in the ledger is linked to the next block, creating a chain. Hence, the system is called a blockchain. The chain enables anyone to validate all transactions without going to an outside source. From this, decentralized currencies such as Bitcoin are possible.

Proof-of-work blockchain. Source: https://bitcoin.org/bitcoin.pdf.

Blockchain Attacks

Attackers have adopted many methods targeting consumers and businesses. The primary attack vectors include phishing, malware, implementation vulnerabilities, and technology. In a phishing scheme in January, Iota cryptocurrency lost $4 million to scams that lasted several months. Malware authors often change their focus. In late 2017 to early 2018 some have migrated from deploying ransomware to cryptomining. They have been found using open-source code such as XMRig for system-based mining and the mining service Coinhive.

Source: McAfee Labs

Implementation vulnerabilities are the flaws introduced when new technologies and tools are built on top of blockchain. The recent EOS attack is one example. In mid-July 2017 Iota suffered an attack that essentially enabled attackers to steal from any wallet. Another currency, Verge, was found with numerous vulnerabilities. Attackers exploiting the vulnerabilities were able to generate coins without spending any mining power.

Known attacks against the core blockchain technology are much more difficult to implement, although they are not unheard of. The most widely known attack is the 51% attack, or majority attack, which enables attackers to create their own chains at will. The group 51 Crew targeted small coins, including Krypton, and held them for ransom. Another attack, known as a Sybil attack, can allow an attacker to completely control a targeted victim’s ledger. Attempts have been made for larger scale Sybil attacks such as one in 2016. 

Dictionary Attacks

Blockchain may be a relatively new technology but that does not mean that old attacks cannot work. Mostly due to insecure user behavior, dictionary attacks can leverage some implementations of blockchain. Brain wallets, or wallets based on weak passwords, are insecure, yet people still use them. These wallets are routinely stolen, as was the case with the nearly BTC60 stolen from the following wallet:

This wallet recorded two transactions as recently as March 5, 2018. One incoming and one outgoing transaction occurred within roughly 15 minutes. Source: https://blockchain.info.

Exchanges Under Attack

The biggest players, and targets, in blockchain are cryptocurrency exchanges. Cryptocurrency exchanges can be thought of as banks in which you users create accounts, manage finances, and even trade currencies including traditional ones. One of the most notable incidents is the attack against Mt. Gox between 2011‒2014 that resulted in $450 million of Bitcoin stolen and led to the liquidation and closure of the company. Coincheck, previously mentioned, survived the attack and began reimbursing victims for their losses in March 2018. Not all recent exchanges fared so well. Bitcurex abruptly closed and led to an official investigation into the circumstances; Youbit suffered two attacks, leading the company into bankruptcy.

An advertisement for the shuttered Polish exchange Bitcurex.

Conclusion 

Blockchain technologies and its users are heavily targeted by profit-driven cybercriminals. Current attackers are changing their tactics and new groups are entering the space. As more businesses look to blockchain to solve their business problems and consumers increasingly rely on these technologies, we must be diligent in understanding where the threats lie to achieve proper and tailored risk management. New implementations must place security at the forefront. Cybercriminals have already enjoyed successes against the users and implementations of blockchain so we must prepare accordingly.

The post Threat Report: Don’t Join Blockchain Revolution Without Ensuring Security appeared first on McAfee Blogs.

May 21 2018

It’s a Zoo Out There! Data Analysis of Alleged ZooPark Dump

In early May, researchers disclosed a Mobile malware campaign by a group focused on Middle Eastern targets. This actor was found to be an evolving and sophisticated group using fake Android apps, namely Telegram, to trick users into installing malicious software. They have been active since 2015 and evolved over several campaigns into 2018. On May 14, a Reddit post linked to LamePT, claiming to have leaked their infrastructure including a database containing victim information.

Figure 1 – Screenshot of the site hosting the leaked data

The current leaked assets include:

  • MYSQL database
  • Audio recordings
  • The old C2 server and assets
  • AppData folder (presumably of the C2 server)
  • Current C2 server and control panel

Further leaked documents are behind a paywall payable to a fresh bitcoin address. The first payment was made on May 13th, 2018 leaving a balance of $1,110.87. It’s difficult to verify if someone paid to have the first dataset released or the actor paid themselves to appear more authentic. With that said, the authenticity of the data is still in question as we have some significant doubts on at least a portion of the data. For example, the following SMS caught our attention:

“Wife.how she knew the time of murder exactly”.

This text can be found in an SMS spam dataset used for training spam engines. Many other English based SMS messages can also be found here. “will be office around 4 pm. Now I am going hospital” is another example. Universities tend to use these datasets to teach computer science concepts. In this case, the concept is likely related to machine learning techniques for categorizing messages into spam. One university came up often when searching for these messages based on its Computer Science I: Fundamentals homework postings. Other messages could be found in cached websites.

“Credit shuma ka mast jahat ezdiad credit ba hesab tan shumarai 222 ra dair namoda w aba taqeeb aan code 14 raqami ra dakhel nomaed .”

This translates to “Credit card is not available for sale at 222 days or less than 142 days.” and found cached in a language translation site. This particular phrase was being translated from Turkish to Urdu. Not all of the messages were found publicly online. Most of the messages were in Middle Eastern languages presenting its own challenges. Other sources were found such as Facebook posts; however, sources for the vast majority of the SMS message have not yet been located. For these reasons, we remain skeptical of the authenticity of the data.

Figure 2 – Facebook post with the same text as an SMS message

Other data such as the recordings do not appear to be publicly available. After sampling 100 of these files we’ve found them to sound like authentic recordings. The majority are in 7 minute 59 second .3gpp files. Most appear to be ambient conversations and daily activities and not phone calls as was expected. Searching for public audio is difficult but we can verify that the hashes of the 100 are not publicly indexed by major search engines nor are the file names themselves.

Until we know for certain whether the data is authentic we cannot grantee that this data dump represents ZooPark and its capabilities but we can look at what they could be up to. After reviewing the leaked MySQL database we’ve learned much about the ZooPark’s potential operations.

Tables Included:

  • Appinfotracking
  • Audiotracking
  • Calltracking
  • Emailtracking
  • geolog
  • gpslocation
  • phonebookaccess
  • phototracking
  • recordcall
  • registration
  • sales_user_info
  • settings
  • smstracking
  • urltracking

From the table names alone, we can infer a lot of the access ZooPark had to user devices and the data they were after. Call tracing, phonebook access, and SMS tracking are unfortunately very common to collect amongst malicious app developers. However, audio tracking caught our attention. While we are still analyzing the dataset, the database records indicate over 102,571 recordings have been uploaded to their C2 server between 2015 and 2018. The dump contains approximately 3,887 of these, jeopardizing private and potentially highly sensitive conversations. Our sampling of these files indicate that the audio was recorded in roughly 8-minute blocks. Most, but not all audio files took place with time gaps between them. There was at least one group conversation that continued on for at least 3 recorded blocks. A surprisingly low number of phone numbers generated these recordings. Only eight phone numbers are part of the recording available through this data dump.

Other conversations were also captured such as SMS texts although portions of these have been found publicly in open datasets. Conceivably, these could have been generated by researchers investigating the malicious Android apps but it’s more likely they were generated by the data leaker to sell the dump. The SMS texts contain much of what you expect such as general chat, and advertisements. However, it’s also riddled with embarrassing or explicit texts which could be used against the users should they prove legitimate. Additionally, we’ve found cleartext two-factor authentication messages from major services such as Google and LinkedIn, and popular chat apps such as Telegram. ZooPark could have used these to gain access to additional services unbeknownst to the victims. After attempting and failing to rebuild several English based conversations we have little confidence that the entire data set came from ZooPark. However, It does exemplify the real danger of sensitive conversations being collected by Zoopark and available for their operations.

Another surprising find is in the Appinfotracking table, where there are 1541 unique apps listed, indicating a very large campaign. Here are a few notable ones:

  • Youtube
  • Wikipedia
  • WhatsApp
  • WinZip
  • Weather
  • VLC
  • Twitter
  • Telegram
  • TrueCaller
  • Tango
  • Pinterest
  • ICQ
  • Flashlight
  • Facebook
  • DUO
  • Dropbox
  • Crunchyroll

There were relatively few games listed compared to other social and utility apps, perhaps suggesting a more utilitarian or professional target. Approximately, 92 phone numbers are listed in relation to the apps. Of the GPS coordinates we’ve checked the middle east is still the main focus, with a significant footprint in Egypt.

While the data leakers request is for Bitcoin payment, we believe they are primarily interested in acquiring Monero coin. Once payments are made the actors use a popular tool called ShapeShift to turn the Bitcoin into Monero (XMR). Shapeshift allows the actors to pay in from one cryptocoin and receive a payout in another without creating an account for the service. The added Monero features enable them to maintain greater anonymity during the transfer. It is anonymity that usually motivates cybercriminals to move to Monero.  Monero coins are of interest due to their improved anonymity and privacy-related improvements, making it difficult to for law enforcement and security researchers to trace.

Shapeshift Transaction from BitCoin (BTC) to Monero (XMR)

The actor who leaked this data is obviously motivated by money as evidenced by the requested payment for further data leaks. Fake datasets, especially those that contain credit card information, email addresses and passwords, have been known to be for sale to scam other cybercriminals. It’s a distinct possibility that this could be the case with the current data dump but it has yet to be determined. However, competition also can play a primary motivator. Many times competing bad actors will attempt to sabotage others in the space. Altruism can play a role as well. Some vigilante actors may believe that their motivations are for the greater good regardless of the laws they break and collateral damage. Whatever the motivations are, data leaks like these can be embarrassing, damaging and in some cases dangerous for the victims whose information it may contain.
Other points of interest:

  • There are a surprisingly low number of unique victim numbers in the database with only 169.
  • The latest URL record is as recent as May 12,2018
  • The latest SMS record is as recent as May 8,2018
  • 81 unique numbers had 47,784 records of GPS data stored

Bitcoin Address:

  • 1AUMs2ieZ7qN4d3M1oUPCuP3CH9WGQxpbd

The post It’s a Zoo Out There! Data Analysis of Alleged ZooPark Dump appeared first on McAfee Blogs.

Apr 03 2018

Google bans cryptomining Chrome extensions because they refuse to play by the rules

Enlarge / Mining: no longer welcome in Chrome. (credit: Jeremy Buckingham / Flickr)

After a policy that previously permitted them, Google has decided to remove any and all Chrome extensions that mine for cryptocurrencies after finding that too many developers didn't play by the company's rules.

Google allowed Chrome extensions that performed mining with the proviso that the extensions clearly disclosed that they performed mining and performed no activity but mining. About 10 percent of extensions that mined within the browser followed these rules, but some 90 percent didn't. Instead, they mined surreptitiously, driving up people's electricity bills and running down their batteries without any informed consent on the user's behalf.

In response to this continued misbehavior, Google has decided to ban any and all cryptomining extensions. Effective immediately, the Chrome Web Store will no longer accept any extensions that mine for cryptocurrencies and, starting in June, will remove any existing extensions that mine.

Read 3 remaining paragraphs | Comments

Mar 12 2018

‘McAfee Labs Threats Report’ Examines Cryptocurrency Hijacking, Ransomware, Fileless Malware

Today McAfee published the McAfee Labs Threats Report: March 2018. The report looks into the growth and trends of new malware, ransomware, and other threats in Q4 2017. McAfee Labs saw on average eight new threat samples per second, and the increasing use of fileless malware attacks leveraging Microsoft PowerShell. The Q4 spike in Bitcoin value prompted cybercriminals to focus on cryptocurrency hijacking through a variety of methods, including malicious Android apps.

Each quarter, McAfee Labs, led by the Advanced Threat Research team, assesses the state of the cyber threat landscape based on threat data gathered by the McAfee Global Threat Intelligence cloud from hundreds of millions of sensors across multiple threat vectors around the world. McAfee Advanced Threat Research complements McAfee Labs by providing in-depth investigative analysis of cyberattacks from around the globe.

Cybercriminals Take on New Strategies, Tactics

The fourth quarter of 2017 saw the rise of newly diversified cybercriminals, as a significant number of actors embraced novel criminal activities to capture new revenue streams. For instance, the spike in the value of Bitcoin prompted actors to branch out from moneymakers such as ransomware, to the practice of hijacking Bitcoin and Monero wallets. McAfee researchers discovered Android apps developed exclusively for the purpose of cryptocurrency mining and observed discussions in underground forums suggesting Litecoin as a safer model than Bitcoin, with less chance of exposure.

Cybercriminals also continued to adopt fileless malware leveraging Microsoft PowerShell, which surged 432% over the course of 2017, as the threat category became a go-to toolbox. The scripting language was used within Microsoft Office files to execute the first stage of attacks.

Health Care Targeted

Although publicly disclosed security incidents targeting health care decreased by 78% in the fourth quarter of 2017, the sector experienced a dramatic 210% overall increase in incidents in 2017. Through their investigations, McAfee Advanced Threat Research analysts conclude many incidents were caused by organizational failure to comply with security best practices or address known vulnerabilities in medical software.

McAfee Advanced Threat Research analysts looked into possible attack vectors related to health care data, finding exposed sensitive images and vulnerable software. Combining these attack vectors, analysts were able to reconstruct patient body parts, and create three-dimensional models.

Q4 2017 Threats Activity

Fileless malware. In Q4 JavaScript malware growth continued to slow with new samples decreasing by 9%, while new PowerShell malware more than tripled, growing 267%.

Security incidents. McAfee Labs counted 222 publicly disclosed security incidents in Q4, a decrease of 15% from Q3. 30% of all publicly disclosed security incidents in Q4 took place in the Americas, followed by 14% in Europe and 11% in Asia.

Vertical industry targets. Public, health care, education, and finance, respectively, led vertical sector security incidents for 2017.

  • Health Care. Disclosed incidents experienced a surge in 2017, rising 210%, while falling 78% in Q4.
  • Public sector. Disclosed incidents decreased 15% in 2017, down 37% in Q4.
  • Disclosed incidents rose 125% in 2017, remaining stagnant in Q4.
  • Disclosed incidents rose 16% in 2017, falling 29% in Q4. 

Regional targets

  • Disclosed incidents rose 46% in 2017, falling 46% in Q4.
  • Disclosed incidents fell 58% in 2017, rising 28% in Q4.
  • Disclosed incidents fell 20% in 2017, rising 18% in Q4.
  • Disclosed incidents rose 42% in 2017, falling 33% in Q4. 

Attack vectors. In Q4 and 2017 overall, malware led disclosed attack vectors, followed by account hijacking, leaks, distributed denial of service, and code injection.

Ransomware. The fourth quarter saw notable industry and law enforcement successes against criminals responsible for ransomware campaigns. New ransomware samples grew 59% over the last four quarters, while new ransomware samples growth rose 35% in Q4. The total number of ransomware samples increased 16% in the last quarter to 14.8 million samples.

Mobile malware. New mobile malware decreased by 35% from Q3. In 2017 total mobile malware experienced a 55% increase, while new samples declined by 3%.

Malware overall. New malware samples increased in Q4 by 32%. The total number of malware samples grew 10% in the past four quarters.

Mac malware. New Mac OS malware samples increased by 24% in Q4. Total Mac OS malware grew 243% in 2017.

Macro malware. New macro malware increased by 53% in Q4, declined by 35% in 2017.

Spam campaigns. 97% of spam botnet traffic in Q4 was driven by Necurs—recent purveyor of “lonely girl” spam, pump-and-dump stock spam, and Locky ransomware downloaders—and by Gamut—sender of job offer–themed phishing and money mule recruitment emails.

For more information on these threat trends and statistics, please visit:

Twitter @Raj_Samani & @McAfee_Labs.

The post ‘McAfee Labs Threats Report’ Examines Cryptocurrency Hijacking, Ransomware, Fileless Malware appeared first on McAfee Blogs.