Jul 13 2018

What Drives a Ransomware Criminal? CoinVault Developers Convicted in Dutch Court

How often do we get a chance to learn what goes on in the minds of cybercriminals? Two members of McAfee’s Advanced Threat Research team recently did, as they attended a court case against two cybercriminal brothers.

The brothers, Dennis and Melvin, faced a judge in Rotterdam, in the Netherlands. This case was one of the first in the world in which ransomware developers appeared in court and were convicted for creating and spreading ransomware.

They were responsible for creating the ransomware families CoinVault and BitCryptor. CoinVault, the better known of the two, made its appearance in late 2014. The technically skilled programmers had examined the source code of CryptoLocker, the notorious ransomware family that first struck in 2013. The brothers were not very impressed and agreed that they could do a better job. What might have started out as a fun technical challenge turned into a criminal business.

The CoinVault and BitCryptor campaigns were not as widespread as CTB-Locker, CryptoWall, or Locky ransomware campaigns. Nor did they profit as much from it, but this case is nevertheless uncommon. It is rare that the developers of ransomware are caught, let alone confess their crimes. This case gives us an opportunity to understand what drove them down a path to cybercrime.

The challenge

Why would someone write malicious code and infect thousands of people? The judge asked the brothers the same question. Their response was “Because it was a technical challenge.” “But didn’t you realize you were dealing with people?” the judge responded. Both brothers answered that they did not; they were dealing with computers and never met their victims face to face.

The judge and prosecutor did not accept their explanation. CoinVault had a built-in helpdesk function to directly communicate with their victims, thus registering their pleas. The brothers standard reaction was merciless: “Just pay the money; otherwise we won’t decrypt.” According to the prosecutor, they had plenty of opportunities to see the consequences of their actions but choose to ignore them for money.

At the trial they said they were sorry and tearfully regretted what they had done. But were these mere crocodile tears because they got caught? During CoinVault’s lifespan, several versions of the ransomware were released. Every new version was a reaction to blogs written by security researchers and takedowns performed by law enforcement. Instead of realizing that they were making a mistake and stopping, the brothers saw it as a challenge, a digital game of cat and mouse, and constantly improved their malicious code.

Their continuing to improve the ransomware shows a lack of empathy with their victims. Was there no one in their social surroundings who could straighten their moral compasses and talk sense into them?

The payment

A ransomware criminal must decide the amount of ransom to charge. Generally the more targeted a ransomware attack is, the higher the ransom demand will be. CoinVault’s infections were not targeted at one organization; they charged only US$250. The two brothers explained that they chose that price to be low enough for an average person to pay while still making a good profit. The prosecutor remarked ironically that they were “very noble [to keep] their ransom demand affordable.”

The infection

The two brothers did not directly infect their victims with ransomware; they took a multistep approach. Their distribution method was via newsgroup channels. They hooked a small piece of malicious code to known software or license-key generators before posting the software packages on the newsgroups. Once victims installed the package or ran the key generator, they would become part of a botnet through the software the brothers named Comhost, which can record keystrokes, search for credentials, and steal Bitcoin wallets. Comhost can also upload and execute binaries received from the control server they named Sonar. (We believe Sonar is modified a version of the popular Solar botnet software.)

The Sonar botnet panel.

Once they had accumulated enough bots, they simply pushed CoinVault to all their victims and locked thousands of computers at once. This method made it hard for victims to figure out how they were attacked, because weeks could pass between the initial infection and the encryption. By spreading their ransomware via newsgroups with pirated software, they discouraged victims from going to the police out of fear of prosecution and copyright-violation fines.

The CoinVault lock screen.

The arrest

In April 2015, The National High Tech Crime Unit of the Dutch Police seized the control servers for CoinVault. After the police investigated, the two brothers, aged 18 and 22 at the time, were arrested in Amersfoort, Netherlands, on September 14, 2015. Systems were infected not only in the Netherlands, but also in the United States, Germany, France, and the United Kingdom. Their mistakes? Using flawless Dutch in the ransom notes and one time they did not use a Tor connection to log in into their control server, instead using their home connection.

Flawless Dutch in the ransomware code.

Although they used an obfuscator tool (Confuser) for their code, in some of the samples the full name of one of the authors was present, because they did not clean up the debugging path.

Example:

 c:\Users\**********\Desktop\Coinvault\coinvault-cleaned\obj\Debug\coinvault.pdb

From grabbing keys to No More Ransom

During the investigation the Dutch police obtained all the decryption keys for CoinVault and partnered with the private sector to build a decryption tool for CoinVault ransomware, successfully mitigating a large portion of the damage caused by CoinVault. This effort idea gave birth to No More Ransom, an online portal supported by the public and private sector with the largest repository on the planet of free ransomware decryption tools. No More Ransom now has decryptors for 85 ransomware versions. This global initiative has prevented millions of dollars from falling into the hands of cybercriminals. McAfee is proud to be one of the founding members of No More Ransom.

Nomoreransom.org

The next steps

Extorting people with ransomware is wrong, and perpetrators must be held accountable. It is sad to see two talented young people choose a pathway to cybercrime and waste their skills—skills sorely needed in the cybersecurity sector. We hope they will have learned a lesson as they endure the consequences of their actions. The sentencing will take place in about two weeks. Perhaps after they serve their time, they will find someone willing to give them a second chance.

The post What Drives a Ransomware Criminal? CoinVault Developers Convicted in Dutch Court appeared first on McAfee Blogs.

Jul 12 2018

Google Play Users Risk a Yellow Card With Android/FoulGoal.A

English soccer fans have enthusiastically enjoyed the team’s current run in the World Cup, as the tune “Three Lions” plays in their heads, while hoping to end 52 years of hurt. Meanwhile a recent spyware campaign distributed on Google Play has hurt fans of the beautiful game for some time. Using major events as social engineering is nothing new, as phishing emails have often taken advantage of disasters and sporting events to lure victims.

“Golden Cup” is the malicious app that installs spyware on victims’ devices. It was distributed via Google Play, and “offered” the opportunity to stream games and search for records from the current and past World Cups. McAfee Mobile Security identifies this threat as Android/FoulGoal.A; Google has removed the malicious applications from Google Play.

Once Golden Cup is installed it appears to be a typical sporting app, with multimedia content and general information about the event. Most of this data comes from a web service without malicious activity. However, in the background and without user consent the app silently transfers information to another server.

Data captured

Golden Cup captures a considerable amount of encrypted data from the victim’s device:

  • Phone number
  • Installed packages
  • Device model, manufacturer, serial number
  • Available internal storage capacity
  • Device ID
  • Android version
  • IMEI, IMSI

This spyware may be just the first stage of a greater infection due to its capability to load dex files from remote sources. The app connects to its control server and tries to download, unzip, and decrypt a second stage.

Android/FoulGoal.A detects when the screen is on or off and records this in its internal file scrn.txt, with the strings “on” or “off” to track when users are looking at their screens:

The Message Queuing Telemetry Transport protocol serves as the communication channel between the device and the malicious server to send and receive commands.

Data encryption

User data is encrypted with AES before it is sent to the control server. Cryptor class provides the encryption and decryption functionality. The doCrypto function is defined as a common function. As the first parameter of the function, “1” represents encryption and “2” is decryption mode:

The encryption key is generated dynamically using the SecureRandom function, which generates a unique value on the device to obfuscate the data. The addKey function embeds the encryption key into the encryption data. The data with the key is uploaded to the control server.

We believe the malware author uses this AES encryption technique for any information to be uploaded to escape the detection by Google Bouncer and network inspection products.

Our initial analysis suggests there were at least 300 infections, which we suspect occurred between June 8‒12, before the first World Cup matches began.

The second round

The second phase of the attack leverages an encrypted dex file. The file has a .data extension and is downloaded and dynamically loaded by the first-stage malware; it is extracted with the same mechanism used to upload the encrypted files. The location of the decryption key can be identified from the size of the contents and a fixed number in the first-stage malware.

After decryption, we can see out.dex in zipped format. The dex file has spy functions to steal SMS messages, contacts, multimedia files, and device location from infected devices.

The control server in second stage is different from the first stage’s. The encryption methodology and the server folder structures on the remote server are identical to the first stage.

We found one victim’s GPS location information and recorded audio files (.3gp) among the encrypted data on the control server.

Variants

We have also discovered two other variants of this threat created by the same authors and published to Google Play as dating apps. Although all the apps have been removed from Google Play, we still see indications of infections from our telemetry data, so we know these apps are active on some users’ devices.

Our telemetry data indicates that although users around the world have downloaded the app, the majority of downloads took place in the Middle East, most likely as a result of a World Cup–themed Twitter post in Hebrew directing people to download the app for a breakdown of the latest events.

McAfee Mobile Security users are protected against all the variants of this threat, detected as   Android/FoulGoal.A.

The post Google Play Users Risk a Yellow Card With Android/FoulGoal.A appeared first on McAfee Blogs.

Jun 27 2018

‘McAfee Labs Threats Report’ Spotlights Innovative Attack Techniques, Cryptocurrency Mining, Multisector Attacks

In the McAfee Labs Threats Report June 2018, published today, we share investigative research and threat statistics gathered by the McAfee Advanced Threat Research and McAfee Labs teams in Q1 of this year. We have observed that although overall new malware has declined by 31% since the previous quarter, bad actors are working relentlessly to develop new technologies and tactics that evade many security defenses.

These are the key campaigns we cover in this report.

  • Deeper investigations reveal that the attack targeting organizations involved in the Pyeongchang Winter Olympics in South Korea used not just one PowerShell implant script, but multiple implants, including Gold Dragon, which established persistence to engage in reconnaissance and enable continued data exfiltration.
  • The infamous global cybercrime ring known as Lazarus has resurfaced. We discovered that the group has launched the Bitcoin-stealing phishing campaign “HaoBao,” which targets the financial sector and Bitcoin users.
  • We are also seeing the emergence of a complex, multisector campaign dubbed Operation GhostSecret, which uses many data-gathering implants. We expect to see an escalation of these attacks in the near future.

Here are some additional findings and insights:

  • Ransomware drops: New ransomware attacks took a significant dive (-32%), largely as a result of an 81% drop in Android lockscreen malware.
  • Cryptojacking makes a comeback: Attackers targeting cryptocurrencies may be moving from ransomware to coin miner malware, which hijacks systems to mine for cryptocurrencies and increase their profits. New coin miner malware jumped an astronomical 1,189% in Q1.
  • LNK outpaces PowerShell: Cybercriminals are increasingly using LNK shortcuts to surreptitiously deliver malware. New PowerShell malware dropped 77% in Q1, while attacks leveraging Microsoft Windows LNK shortcut files jumped 24%.
  • Incidents go global: Overall security incidents rose 41% in Q1, with incidents hitting multiple regions showing the biggest increase, at 67%, and the Americas showing the next largest increase, at 40%.

Get all the details by reading the McAfee Labs Threats Report, June 2018.

The post ‘McAfee Labs Threats Report’ Spotlights Innovative Attack Techniques, Cryptocurrency Mining, Multisector Attacks appeared first on McAfee Blogs.

Jun 19 2018

McAfee Labs – McAfee Blogs 2018-06-19 00:01:25

Every week we read about adversaries attacking their targets as part of online criminal campaigns. Information gathering, strategic advantage, and theft of intellectual property are some of the motivations. Besides these, we have seen during the past two years an increase in attacks in which adversaries are not shy of leaving a trail of destruction. One might wonder how to deal with these kinds of threats and where to start.

Sun Tzu’s The Art of War contains some great wisdom regarding the strategy of warfare. One of the most popular is the advice “If you know the enemy and know yourself, you need not fear the result of a hundred battles. If you know yourself but not the enemy, for every victory gained you will also suffer a defeat. If you know neither the enemy nor yourself, you will succumb in every battle.”

Applying this advice to information security, let’s focus first on knowing yourself. Knowing yourself can roughly be divided into two parts:

  • What do I have that can be of value to an attacker?
  • How do I detect, protect, and correct any threats to my identified value?

Every company has a value, it takes only one criminal mind to see that and to attempt to exploit it. Ask yourself what the core of your business is, the secret sauce that people might be after, what will take you out of business, whom you are doing business with, who are your clients, etc.

Once you have identified your organization’s value, the second part of knowing yourself comes into play. You must understand where you to focus your defenses and invest in technology to detect and protect against threats.

After wrapping up the knowing yourself part, what can we learn from the enemy? Ask yourself “Who would likely be interested in attacking me?” By going through the list of known adversaries and cybercriminal groups, you can create a list based on which geographies and vectors they target and classify them by risk. Here is a simplified example:

Once you have your list and risk classification ready, you must next study the tactics, techniques, and procedures used by these adversaries. For mapping their techniques and associated campaigns, we use the MITRE Adversarial Tactics, Techniques, and Common Knowledge model (ATT&CK). The matrix covers hundreds of techniques, and can be applied for different purposes. In this case, we will focus on the risk versus mapping the defensive architecture.

In Q1 of 2018, we mapped the targeted attacks discovered by ourselves and our peers in the industry. The following example comes from one adversary we tracked, showing the techniques they used:

With MITRE’s Navigator tool you can select an actor or malware family. After making the selection, the boxes in the matrix show which techniques the actor or malware has used.

From these techniques we can learn how our environments protect against these techniques and where we have gaps. The goal is not to create coverage or signatures for each technique; the matrix helps organizations understand how attackers behave. Having more visibility into their methods leads us to the right responses, and helps us contain and eradicate attacks in a coordinated way. By comparing the multiple actors from your initial risk assessment, you can build the matrix from the perspective of high/medium/low risk and map it against your defenses.

Although some adversaries might not have a history of attacking you and your sector, it is still good to ask yourself “What if we were a target?” Would your environment create enough visibility to detect and deal with these techniques?

Statistics

When we looked at the first quarter, we noticed that the three techniques were the most popular in the category of Privilege Escalation:

  • Exploitation of vulnerability
  • Process injection
  • Valid accounts

To determine your coverage and detection capacity, you should ask if the exploits used completely new vulnerabilities (no patches available) or if they had existed for a while. Would your environment have the right patches installed or are you missing them and have to take action?

When we looked at the categories of Exfiltration and Command and Control, most campaigns exfiltrated their data over a control server channel using a common port. That translates to either TCP port 80 (HTTP) or TCP port 443 (HTTPS). We all use these ports from inside the network to communicate to the internet. What if all my other defenses would fail to discover the suspicious activity? Which defensive components in my network would be able to inspect the outgoing traffic and block or flag the exfiltration attempts?

Conclusion

In this post, we highlighted one approach and application of the ATT&CK model. There are many ways to apply it for red teaming, threat hunting, and other tasks. At McAfee we embrace the model and are applying it to different levels and purposes in our organization. We are not only using it but also contribute to the model by describing newly discovered techniques used by adversaries.

The post Apply MITRE’s ‘ATT&CK’ Model to Check Your Defenses appeared first on McAfee Blogs.