Almost every Volkswagen sold since 1995 can be unlocked with an Arduino

(credit: Frank Derks)

Over at Wired, Andy Greenberg reports that security researchers have discovered how to use software defined radio (SDR) to remotely unlock hundreds of millions of cars. The findings are to be presented at a security conference later this week, and detail two different vulnerabilities.

The first affects almost every car Volkswagen has sold since 1995, with only the latest Golf-based models in the clear. Led by Flavio Garcia at the University of Birmingham in the UK, the group of hackers reverse-engineered an undisclosed Volkswagen component to extract a cryptographic key value that is common to many of the company's vehicles.

Alone, the value won't do anything, but when combined with the unique value encoded on an individual vehicle's remote key fob—obtained with a little electronic eavesdropping, say—you have a functional clone that will lock or unlock that car.

Read 4 remaining paragraphs | Comments

An ATM hack and a PIN-pad hack show chip cards aren’t impervious to fraud

Security researchers are eager to poke holes in the chip-embedded credit and debit cards that have arrived in Americans' mailboxes over the last year and a half. Although the cards have been in use for a decade around the world, more brains trying to break things are bound to come up with new and inventive hacks. And at last week's Black Hat security conference in Las Vegas, two presentations demonstrated potential threats to the security of chip cards. The first involved fooling point-of-sale (POS) systems into thinking that a chip card is a magnetic stripe card with no chip, and the second involved stealing the temporary, dynamic number generated by a chip card and using it in a very brief window of time to request money from a hacked ATM.

Double trouble

Chip card technology—often called EMV for EuroPay, MasterCard, and Visa for the three companies that developed the chip card standard—is supposed to offer significant security benefits over the old magnetic stripe card system. Magnetic stripe cards have a static card number written into their magnetic stripe, and if a POS system is infected with malware, as was the case in the infamous Target and Home Depot hacks, then a malicious actor can take those card numbers and make counterfeit purchases with them. An EMV card, by contrast, uses a chip to transmit a dynamic number that changes with each purchase. That makes it a lot harder to steal a card number and reuse it elsewhere.

But that doesn’t mean it’s impossible. Late last year, security researcher Samy Kamkar demonstrated that he could calculate a replacement American Express card number based on the previous card number, replicate the credit card’s magnetic stripe information on a programmable chip, and use it to make purchases around town, much like the now-defunct Coin card. Kamkar was even able to do this with chip cards—the magnetic stripe on the back of every card has two tracks of data that tell card readers information like cardholder name, the card’s number, its expiration date, etc. Track 2 data will tell a card reader if the card has a chip and needs to be dipped—otherwise it can be swiped. Kamkar’s solution was to alter the Track 2 data and spoof the card reader to tell it that the card only has a magnetic stripe, no chip, thus bypassing the entry of a dynamic number.

Read 16 remaining paragraphs | Comments

Secure Boot snafu: Microsoft leaks backdoor key, firmware flung wide open

Microsoft has inadvertently demonstrated the intrinsic security problem of including a universal backdoor in its software after it accidentally leaked its so-called "golden key"—which allows users to unlock any device that's supposedly protected by Secure Boot, such as phones and tablets.

The key basically allows anyone to bypass the provisions Microsoft has put in place ostensibly to prevent malicious versions of Windows from being installed, on any device running Windows 8.1 and upwards with Secure Boot enabled.

And while this means that enterprising users will be able to install any operating system—Linux, for instance—on their Windows tablet, it also allows bad actors with physical access to a machine to install bootkits and rootkits at deep levels. Worse, according to the security researchers who found the keys, this is a decision Microsoft may be unable to reverse.

Read 8 remaining paragraphs | Comments

Bug Bounties Reaching $500,000 For iOS Exploits

It seems this year bug bounties are getting really serious, especially on the secondary market involving exploit trading firms, not direct to the software producer or owner. $500,000 isn’t chump change and would be a good year for a small security team, especially living somewhere with a weaker currency. Even for a solo security researcher...

Read the full post at