Securing Space 4.0 – One Small Step or a Giant Leap? Part 1

McAfee Advanced Threat Research (ATR) is collaborating with Cork Institute of Technology (CIT) and its Blackrock Castle Observatory (BCO) and the National Space Center (NSC) in Cork, Ireland

The essence of Space 4.0 is the introduction of smaller, cheaper, faster-to-the-market satellites in low-earth-orbit into the value chain and the exploitation of the data they provide. Space research and communication prior to Space 4.0 was primarily focused on astronomy and limited to that of governments and large space agencies. As technology and society evolves to consume the “New Big Data” from space, Space 4.0 looks set to become the next battleground in the defense against cybercriminals. Space 4.0 data can range from earth observation sensing to location tracking information and applied across many vertical uses cases discussed later in this blog. In the era of Space 4.0 the evolution of the space sector is rapidly changing with a lower cost of launching, combined with public and private partnerships that open a whole new dimension of connectivity. We are already struggling to secure our data on earth, we must now understand and secure how our data will travel through space constellations and be stored in cloud data centers on earth and in space.

Low Earth Orbit (LEO) satellites are popular for scientific usage but how secure are they? The Internet of Things (IoT) introduced a myriad of insecure devices onto the Internet due to the low cost of processors and high-speed connectivity, but the speed in its adoption resulted in a large fragmentation of insecure hardware and software across business verticals.

Space 4.0 is now on course for a similar rapid adoption with nanosats as we prepare to see a mass deployment of cheap satellites into LEO. These small satellites are being used across government, academic and commercial sectors for different use cases that require complex payloads and processing. Many nanosats can coexist on a single satellite. This means that the same satellite backbone circuit infrastructure can be shared, reducing build and launch costs and making space data more accessible.

To date, satellites have typically been relay type devices repeating signals to and from different locations on earth in regions with poor internet connectivity, but that is all set to change with a mass deployment of smarter satellite devices using inter-satellite links (ISL) in  constellations like Starlink which aim to provide full high speed broadband global coverage. As the Space 4.0 sector is moving from private and government sectors to general availability, this makes satellites more accessible from a cost perspective, which will attract threat actors other than nation states, such as cyber criminals. Space 4.0 also brings with it new service delivery models such as Ground Station as a Service (GSaaS) with AWS and Azure Orbital and Satellite as a Service (SataaS). With the introduction of these, the satellite will become another device connecting to the cloud.

In our research we analyze the ecosystem to understand the latest developments and threats in relation to cybersecurity in space and whether we are ready to embrace Space 4.0 securely.

Space 4.0 Evolution

What is the Industrial 4th Revolution? The original industrial revolution started with the invention of steam engines then electricity, computers and communication technology. Industry 4.0 is about creating a diverse, safe, healthy, just world with clean air, water, soil and energy, as well as finding a way to pave the path for the innovations of tomorrow.

The first space era, or Space 1.0, was the study of astronomy, followed by the Apollo moon landings and then the inception of the International Space Station (ISS). Space 4.0  is analogous to Industry 4.0, which is considered as the unfolding fourth industrial revolution of manufacturing and services. Traditionally, access to space has been the domain of governments and large space agencies (such as NASA or the European Space Agency) due to the large costs involved in the development, deployment and operation of satellites. In recent years, a new approach to using space for commercial, economic and societal good has been driven by private enterprises in what is termed New Space. When combined with the more traditional approach to space activity, the term “Space 4.0” is used. Space 4.0 is applicable across a wide range of vertical domains, including but not limited to:

  • Ubiquitous broadband
  • Autonomous vehicles
  • Earth observation
  • Disaster mitigation/relief
  • Human spaceflight
  • Exploration

Cyber Threat Landscape Review

The Cyber Threat Landscape has evolved greatly over the past 20 years with the convergence of Information Technology (IT), Operational Technology (OT) and IoT. Protecting consumers, enterprises and critical infrastructure with the rapid parallel innovation of technology and cybercriminals is a constant challenge. While technology and attacks evolve rapidly the cybercriminal motive remains a constant; make money and maximize profit by exploiting a combination of users and technology.

Cybercriminals have much more capabilities now than they did 10 years ago due to the rise of Cybercrime as a Service (CaaS). Once an exploit for a vulnerability has been developed, it can then be weaponized into an exploit kit or ransomware worm, such as WannaCry. Cybercriminals will follow the path of least resistance to achieve their goal of making money.

Nearly every device class across the business verticals, ranging from medical devices to space Very-small-aperture terminals (VSAT), have been hacked by security researchers, as evident from Blackhat and Defcon trends.

From a technology stack perspective (hardware and software) there have been vulnerabilities discovered and exploits developed across all layers where we seek to establish some form of trustworthiness when connected to the internet; browsers, operating systems, protocols, hypervisors, enclaves, cryptographic implementations, system on chips (SoC) and processors.

Not all these vulnerabilities and exploits become weaponized by cybercriminals, but it does highlight the fact that the potential exists. Some notable weaponized exploits are:

  1. Stuxnet worm
  2. WannaCry ransomware worm
  3. Triton malware
  4. Mirai Botnet

Some recent major industry vulnerabilities were: BlueKeep (Windows RDP Protocol), SMBGhost (Windows SMB Protocol), Ripple20 (Treck embedded TCP/IP library), Urgent 11 (VxWorks TCP/IP library), Heartbleed (OpenSSL library), Cloudbleed (Cloudflare), Curveball (Microsoft Crypto API), Meltdown and Spectre (Processor side channels).

Cybercriminals will adapt quickly to maximize their profit as we saw with the COVID-19 pandemic and the mass remote workforce. They will quickly understand the operating environment changes and how they can reach their goals by exploiting users and technology, whichever is the weakest link. The easiest entry point into an organization will be through identity theft or weak passwords being used in remote access protocols such as RDP.

Cybercriminals moved to the Dark Web to hide identity and physical location of servers or using bullet-proof providers to host their infrastructure. What if these services are hosted in space? Who is the legal entity and who is responsible?

McAfee Enterprise Supernova Cloud analysis reports that:

  • Nearly one in 10 files shared in the cloud with sensitive data have public access, an increase of 111% year over year
  • One in four companies have had their sensitive data downloaded from the cloud to an unmanaged personal device, where they cannot see or control what happens to the data
  • 91% of cloud services do not encrypt data at rest
  • Less than 1% of cloud services allow encryption with customer-managed keys

The transition to the cloud, when done securely, is the right business decision. However, when not done securely it can leave your services and data/data lakes accessible to the public through misconfigurations (shared responsibility model), insecure APIs, and identity and access management issues. Attackers will always go for the low hanging fruit such as open AWS buckets and credentials through vendors in the supply chain.

One of the key initiatives, and now industry benchmark, is the MITRE ATT&CK framework which enumerates the TTPs from real word incidents across Enterprise (Endpoint and Cloud), Mobile and ICS. This framework has proved to be very valuable in enabling organizations to understand adversary TTPs and the corresponding protect, detect and response controls required in their overall defense security architecture. We may well see a version of MITRE ATT&CK evolve for Space 4.0.

Space Cyber Threat Landscape Review

Threat actors know no boundaries as we have seen criminals move from traditional crime to cybercrime using whatever means necessary to make money. Likewise, technology communication traverses many boundaries across land, air, sea and space. With the reduced costs to entry and the commercial opportunities with Space 4.0 big data, we expect to see cybercriminals innovating within this huge growth area. The Cyber Threat Landscape can be divided into vulnerabilities discovered by security researchers and actual attacks reported in the wild. This allows us to understand the technologies within the space ecosystem that are known to contain vulnerabilities and what capabilities threat actors have and are using in the wild.

Vulnerabilities discovered to date have been within VSAT terminal systems and intercepting communications. There have been no vulnerabilities disclosed on actual satellites from figure 1 below.

Figure 1 – Security Researcher space vulnerability disclosures

To date, satellites have mostly been controlled by governments and the military so little information is available as to whether an actual satellite has been hacked. We do expect to see that change with Space 4.0 as these satellites will be more accessible from a hardware and software perspective to do security analysis. Figure 2 below highlights reported attacks in the wild

Figure 2 – Reported Attacks in the Wild

In McAfee’s recent threat research, “Operation North Star”, we observed an increase in malicious cyber activity targeting the Aerospace and Defense industry. The objective of these campaigns was to gather information on specific programs and technologies.

Since the introduction of the cloud, it appears everything has become a device that interacts with a service. Even cybercriminals have been adapting to the service model. Space 4.0 is no different as we start to see the adoption of the Ground Station as a Service (GSaaS) and Satellite as a Service (SataaS) models per figure 3 below. These services are opening in the space sector due to the acceleration of vendors into Space 4.0 to help keep their costs down. Like any new ecosystem this will bring new attack surfaces and challenges which we will discuss in the Threat Modelling section.

Figure 3 – New Devices and Services for Space 4.0


So, with the introduction of cheap satellites using commercial off-the-shelf (COTS) components and new cloud services is it just a matter of time before we see mass satellite attacks and compromise?

Space 4.0 Data Value

The global space industry grew at an average rate of 6.7% per year between 2005 and 2017 and is projected to rise from its current value of $350 billion to $1.3 trillion per annum by 2030. This rise is driven by new technologies and business models which have increased the number of stakeholders and the application domains which they service in a cost-effective way. The associated increase in data volume and complexity has, among other developments, resulted in increasing concerns over the security and integrity of data transfer and storage between satellites, and between ground stations and satellites.

The McAfee Supernova report shows that data is exploding out of enterprises and into the cloud. We are now going to see the same explosion from Space 4.0 to the cloud as vendors race to innovate and monetize data from low cost satellites in LEO.

According to Microsoft the processing of data collected from space at cloud-scale to observe the Earth will be “instrumental in helping address global challenges such as climate change and furthering of scientific discovery and innovation”. The value of data from space must be viewed from the perspective of the public and private vendors who produce and consume such data. Now that satellite launch costs have reduced, producing this data becomes more accessible to commercial markets, so we are going to see much innovation in data analytics to improve our lives, safety and preservation of the earth. This data can be used to improve emergency response times to save lives, monitoring illegal trafficking, aviation tracking blind spots, government scientific research, academic research, improving supply chains and monitoring the earth’s evolution, such as climate change effects. Depending on the use case, this data may need to be confidential, may have privacy implications when tracking and may have substantial value in the context of new markets, innovation and state level research. It is very clear that data from space will have much value as new markets evolve, and cybercriminals will most certainly target that data with the intent to hold organizations to ransom or sell data/analytics innovation to competitors to avoid launch costs. Whatever the use case and value of the data traveling through space may be, we need to ensure that it moves securely by providing a trustworthy end to end ecosystem.

As we progress towards the sixth digital era, our society, lives and connectivity will become very dependent on off-planet data and technology in space, starting with SataaS.

In Part 2 we will discuss remote computers in Space, the Space 4.0 threat model and what we must do to secure Space 4.0 moving forward.

McAfee would like to thank Cork Institute of Technology (CIT) and their Blackrock Castle Observatory (BCO) and the National Space Center (NSC) in Cork, Ireland for their collaboration in our mission to securing Space 4.0.

The post Securing Space 4.0 – One Small Step or a Giant Leap? Part 1 appeared first on McAfee Blogs.

Securing Space 4.0 – One Small Step or a Giant Leap? Part 2

McAfee Advanced Threat Research (ATR) is collaborating with Cork Institute of Technology (CIT) and its Blackrock Castle Observatory (BCO) and the National Space Center in Cork, Ireland

In the first of this two-part blog series we introduced Space 4.0, its data value and how it looks set to become the next battleground in the defense against cybercriminals. In part two we discuss the architectural components of Space 4.0 to threat model the ecosystem from a cybersecurity perspective and understand what we must do to secure Space 4.0 moving forward.

Nanosats: Remote Computers in Space

A satellite is composed of a payload and a bus. The payload is the hardware and software required for the mission or satellite’s specific function, such as imaging equipment for surveillance. The bus consists of the infrastructure or platform that houses the payload, such as thermal regulation and command and control. Small satellites are space craft typically weighing less than 180 kilograms and, within that class of satellites, is what we call nanosatellites or nanosats which typically weigh between 1-10 kilograms. Cubesats are a class of nanosat so you will often hear the term used interchangeably, and for the context of Space 4.0 security, we can assume they are the same device. Nanosats significantly reduce launch costs due to their small size and the fact that many of these devices can be mounted on board a larger single satellite for launch.

Commercial off-the-shelf (COTS) Cubesats typically use free open source software such as FreeRTOS or KubOS for the on-board operating system. However, other systems are possible, with drivers available for most of the hardware on Linux and Windows OS. KubOS is an open source flight software framework for satellites and has cloud-based mission control software, Major Tom, to operate nanosats or a constellation. We mention KubOS here as it is a good example of what the current Space 4.0 operating model looks like today. While we have not reviewed KubOS from a security perspective, developing a secure framework for satellites is the right path forward, allowing mission developers to focus on the payload.

Some of the use cases available with Cubesats are:

  1. File transfers
  2. Remote communication via uplink/downlink
  3. Intra-satellite and inter-satellite communications
  4. Payload services such as camera and sensors telemetry
  5. Software Updates

KubOS is “creating a world where you can operate your small satellite from your web browser or iPhone”. KubOSobjective is to allow customers to send bits and not rockets to space and it is defining a new era of software-designed satellites. The satellite model is changing from relay type devices to remote computers in space using COTS components and leveraging TCP/IP routing capabilities. This model shift also means that there is more software executing on these satellites and more complex payload processing or interaction with the software stack and hence more attack surface.

To date, attacks on satellite systems from a cybersecurity perspective have typically been in the context of VSAT terminals, eavesdropping and hijacking. While there have been vulnerabilities found in the VSAT terminal software and its higher-level custom protocols, there seems to have been no focus and vulnerabilities discovered within the network software stack of the satellite itself. This may be since satellites are very expensive, as well as closed source, so not accessible to security researchers or cybercriminals, but this security by obscurity will not provide protection with the new era of nanosats. Nanosats use COTS components which will be accessible to cybercriminals.

Due to the closed nature of satellites there has not been much published on their system hardware and software stack. However, the Consultative Committee for Space Data Systems (CCSDS), which develops standards and specifications including protocols for satellite communications, does give some insight. The CCSDS technical domains are:

  1. Space Internetworking Services
  2. Mission Ops. And Information Management Services
  3. Spacecraft Onboard Interface Services
  4. System Engineering
  5. Cross Support Services
  6. Space Link Services

The CCSDS standards are divided into color codes to represent recommended standards and practices versus informational and experimental. This is a very large source of data communications for satellite designers to aid them in a reference for implementation. However, as we have observed over the cyber threat landscape of the past few decades, secure standards and specifications for hardware, software and protocols do not always translate to secure implementation. The CCSDS defines a TCP/IP stack suitable for transmission over space datalinks as per figure 1 below. Satellites that become more connected, just like any other device on the internet, their network and protocol software stack will become more accessible and targeted. As we discussed in part 1 <insert link> of our Space 4.0 blog series, there have been many TCP/IP and remote protocol related vulnerabilities in both embedded devices and even state of the art operating systems such as Windows 10. The TCP/IP stack and remote protocol implementations are a common source of vulnerabilities due to the complexities of parsing in unsafe memory languages such as C and C++. There does not appear to be any open source implementations of the CCSDS TCP/IP protocol stack.

Figure 1 – CCSDS Space communications protocols reference model

The CubeSat Protocol (CSP) is a free open source TCP/IP stack implementation for communication over space datalinks, similar to the CCSDS TCP/IP stack. The CSP protocol library is implemented in C, open source and implemented in many Cubesats that have been deployed to space. The protocol can be used for communication from ground station to satellite, inter-satellite and the intra-satellite communication bus. There have been 3 vulnerabilities to date reported in this protocol.

Figure 2 below shows what a Cubesat architecture looks like from a trust boundary perspective relative to the satellite and other satellites within the constellation and the earth.

Figure 2 – Space LEO Cubesat architecture trust boundaries

No hardware, software, operating system or protocol is completely free of vulnerabilities. What is important from a security perspective is:

  1. The accessibility of the attack surface
  2. The motives and capabilities of the adversary to exploit an exposed vulnerability if present in the attack surface

As these low-cost satellites get launched in our LEO and become more connected, any exposed technology stack will become increasingly targeted by cybercriminals.

Space 4.0 Threat Modeling

This Space 4.0 threat model focuses on the cybercriminal and how they can exploit Space 4.0 data for monetization. The following Space 4.0 factors will make it more accessible to cybercriminals:

  1. Mass deployment of small satellites to LEO
  2. Cheaper satellites with COTS components and increased satellite on board software processing (no longer relay devices)
  3. Satellite service models, Ground Station-as-a-Service (GSaaS) and Satellite-as-a-Service (SataaS) and shared infrastructure across government, commercial and academic
  4. Satellite connectivity and networks in space (ISL – inter-satellite links)
  5. Space 4.0 data value

Space security has typically been analyzed from the perspective of ground segment, communications or datalink and space segment. Additionally, the attack classes have been categorized as electronic (jamming), eavesdropping, hijacking and control. Per figure 3 below, we need to think about Space 4.0 with a cybersecurity approach due to the increased connectivity and data, as opposed to the traditional approach of ground, communication and space segments. Cybercriminals will target the data and systems as opposed to the RF transmission layer.

Figure 3 – Space 4.0 threat modeling architecture

It is important to consider the whole interconnectivity of the Space 4.0 ecosystem as cybercriminals will exploit any means possible, whether that be direct or indirect access (another trusted component). Open source networked ground stations such as SatNOGs and the emerging NyanSat are great initiatives for space research but we should consider these in our overall threat model as they provide mass connectivity to the internet and space.

The traditional space security model has been built on a foundation of cost as a barrier to entry and perimeter-based security due to lack of physical access and limited remote access to satellites. However, once a device is connected to the internet the threat model changes and we need to think about a satellite as any other device which can be accessed either directly or indirectly over the internet.

In addition, if a device can be compromised in space remotely or through the supply chain, then that opens a new attack class of space to cloud/ground attacks.

Users and trusted insiders will always remain a big threat from a ground station perspective, just like enterprise security today, as they can potentially get direct access to the satellite control.

The movement of ground services to the cloud is a good business model if designed and implemented securely, however a compromise would impact many devices in space being controlled from the GSaaS. It is not quite clear where the shared responsibility starts and ends for the new SataaS and GSaaS Space 4.0 service models but the satellite key management system (KMS), data, GSaaS credentials and analytics intellectual property (this may reside in the user’s environment, the cloud or potentially the satellite but for the purposes of this threat model we assume the cloud) will be much valued assets and targeted.

From the Cyber and Space Threat Landscape review in part 1 <insert link>, combined with our understanding of the Space 4.0 architecture and attack surfaces, we can start to model the threats in Table 1 below.

Table 1 – Space 4.0 threats, attack classes and layers, and attack vectors

Based on the above threat model, let’s discuss a real credible threat and attack scenario. From our Space cyber threat landscape review in part 1 of this blog series, there were attacks on ground stations in 2008 at the Johnson Space Center and for a Nasa research satellite. In a Space 4.0 scenario, the cybercriminal attacks the ground station through phishing to get access to satellite communications (could also be a supply chain attack to get a known vulnerable satellite system into space). The cybercriminal uses an exploit being sold on the underground to exploit a remote wormable vulnerability within the space TCP/IP stack or operating system of the satellite in space, just like we saw EternalBlue being weaponized by WannaCry. Once the satellite has been compromised the malware can spread between satellite vendors using their ISL communication protocol to propagate throughout the constellation. Once the constellation has been compromised the satellite vendor can be held to ransom, causing major disruption to Space 4.0 data and/or critical infrastructure.

Moving Forward Securely for a Trustworthy Space 4.0 Ecosystem

Establishing a trustworthy Space 4.0 ecosystem is going to require strong collaboration between cyber threat research teams, government, commercial and academia in the following areas:

  1. Governance and regulation of security standards implementation and certification/validation of satellite device security capabilities prior to launch
  2. Modeling the evolving threat landscape against the Space 4.0 technology advancements
  3. Secure reference architectures for end to end Space 4.0 ecosystem and data protection
  4. Security analysis of the CCSDS protocols
  5. Design of trustworthy platform primitives to thwart current and future threats must start with a security capable bill of materials (BOM) for both hardware and software starting with the processor then the operating system, frameworks, libraries and languages. Hardware enabled security to achieve confidentiality, integrity, availability and identity so that satellite devices may be resilient when under attack
  6. Visibility, detection and response capabilities within each layer defined in our Space 4.0 architecture threat model above
  7. Development of a MITRE ATT&CK specifically for Space 4.0 as we observe real world incidents so that it can be used to strengthen the overall defensive security architecture using TTPs and threat emulation

Space 4.0 is moving very fast with GSaaS, SataaS and talk of space data centers and high-speed laser ISL; security should not be an inhibitor for time to market but a contributor to ensure that we have a strong security foundation to innovate and build future technology on with respect to the evolving threat landscape. Space communication predates the Internet so we must make sure any legacy limitations which would restrict this secure foundation are addressed. As software complexity for on board processing and connectivity/routing capability increases by moving to the edge (space device) we will see vulnerabilities within the Space 4.0 TCP/IP stack implementation.

This is a pivotal time for the secure advancement of Space 4.0 and we must learn from the mistakes of the past with IoT where the rush to adopt new and faster technology resulted in large scale deployment of insecure hardware and software. It has taken much effort and collaboration between Microsoft and the security research community since Bill Gates announced the Trustworthy Computing initiative in 2002 to arrive at the state-of-the-art Windows 10 OS with hardware enabled security. Likewise, we have seen great advancements on the IoT side with ARM Platform Security Architecture and Azure Sphere. Many security working groups and bodies have evolved since 2002, such as the Trust Computing Group, Confidential Computing Consortium, Trusted Connectivity Alliance and Zero Trust concept to name a few. There are many trustworthy building block primitives today to help secure Space 4.0, but we must leverage at the concept phase of innovation and not once a device has been launched into space; the time is now to secure our next generation infrastructure and data source. Space security has not been a priority for governments to date but that seems all set to change with the “Memorandum on Space Policy Directive-5—Cybersecurity Principles for Space Systems”.

We should pause here for a moment and recognize the recent efforts from the cybersecurity community to secure space, such as the Orbital Security Alliance, S-ISAC, Mantech and Defcon Hack-a-Sat.

KubOS is being branded as the Android of space systems and we are likely to see a myriad of new software and hardware emerge for Space 4.0. We must work together to ensure Space 4.0 connectivity does not open our global connectivity and infrastructure dependency to the next Mirai botnet or WannaCry worm on LEO.

McAfee would like to thank Cork Institute of Technology (CIT) and its Blackrock Castle Observatory (BCO) and the National Space Center (NSC) in Cork, Ireland for their collaboration in our mission to secure Space 4.0.

The post Securing Space 4.0 – One Small Step or a Giant Leap? Part 2 appeared first on McAfee Blogs.

CISA and MS-ISAC Release Ransomware Guide

Original release date: September 30, 2020

The Cybersecurity and Infrastructure Security Agency (CISA) and the Multi-State Information Sharing & Analysis Center (MS-ISAC) have released a joint Ransomware Guide that details practices that organizations should continuously engage in to help manage the risk posed by ransomware and other cyber threats. The in-depth guide provides actionable best practices for ransomware prevention as well as a ransomware response checklist that can serve as a ransomware-specific addendum to organization cyber incident response plans.

CISA encourages users and administrators to review the Ransomware Guide and CISA’s Ransomware webpage for additional information.

This product is provided subject to this Notification and this Privacy & Use policy.

CISA Releases Telework Essentials Toolkit

Original release date: September 30, 2020

The Cybersecurity and Infrastructure Security Agency (CISA) has released the Telework Essentials Toolkit, a comprehensive resource of telework best practices. The Toolkit provides three personalized modules for executive leaders, IT professionals, and teleworkers. Each module outlines distinctive security considerations appropriate for their role:

  • Actions for executive leaders that drive cybersecurity strategy, investment and culture
  • Actions for IT professionals that develop security awareness and vigilance
  • Actions for teleworkers to develop their home network security awareness and vigilance

CISA encourages users and administrators to review the Telework Essentials Toolkit and the CISA Telework page for more information.

This product is provided subject to this Notification and this Privacy & Use policy.