Two Pink Lines

Depending on your life experiences, the phrase (or country song by Eric Church) “two pink lines” may bring up a wide range of powerful emotions.    I suspect, like many fathers and expecting fathers, I will never forget the moment I found out my wife was pregnant.  You might recall what you were doing, or where you were and maybe even what you were thinking.   As a professional ethical hacker, I have been told many times – “You just think a little differently about things.”   I sure hope so, since that’s my day job and sure enough this experience wasn’t any different.  My brain immediately asked the question, “How am I going to ensure my family is protected from a wide range of cyberthreats?”   Having a newborn opens the door to all sorts of new technology and I would be a fool not to take advantage of all devices that makes parenting easier.   So how do we do this safely?

The A-B -C ‘s

The security industry has a well-known concept called the “principle of least privilege. “This simply means that you don’t give a piece of technology more permissions or access than it needs to perform its primary function.   This can be applied well beyond just technology that helps parents; however, for me it’s of extra importance when we talk about our kids.  One of the parenting classes I took preparing for our newborn suggested we use a baby tracking phone app.   This was an excellent idea, since I hate keeping track of anything on paper.  So I started looking at a few different apps for my phone and discovered one of them asked for permission to use “location services,” also known as GPS, along with access to my phone contacts.  This caused me to pause and ask: Why does an app to track my baby’s feeding schedule need to know where I am?  Why does it need to know who my friends are?   These are the types of questions parents should consider before just jumping into the hottest new app.  For me, I found a different, less popular app which has the same features, just with a little less access.

It’s not always as easy to just “find something else.”  In my house, “if momma ain’t happy, nobody is happy.”  So, when my wife decided on a specific breast pump that came with Bluetooth and is internet enabled, that’s the one she is going to use.   The app backs up all the usage data to a server in the cloud.   There are many ways that this can be accomplished securely, and it is not necessary a bad feature, but I didn’t feel this device benefited from being internet connected.   Therefore, I simply lowered its privileges by not allowing it internet access in the settings on her phone.  The device works perfectly fine, she can show the doctor the data from her phone, yet we have limited our online exposure and footprint just a little more.  This simple concept of least privilege can be applied almost everywhere and goes a long way to limiting your exposure to cyber threats.

Peek-A-Boo

I think one of the most sought after and used products for new parents is the baby monitor or baby camera.   As someone who has spent a fair amount of time hacking cameras (or cameras on wheels) this was a large area of concern for me.  Most cameras these days are internet connected and if not, you often lose the ability to view the feed on your phone, which is a huge benefit to parents.  So how, as parents, do we navigate this securely?  While there is no silver bullet here, there are a few things to consider.    For starters, there are still many baby cameras on the market that come with their own independent video screen.  They generally use Wi-Fi and are only accessible from home.  If this system works for you, use it.  It is always more secure to have a video system which is not externally accessible.   If you really want to be able to use your phone, consider the below.

  • Where is the recorded video and audio data being stored? This may not seem important if the device is internet connected anyway, but it can be.  If your camera data is being stored locally (DVR, SD card, network storage, etc.), then an attacker would need to hack your specific device to obtain this information.   If you combine this with good security hygiene such as a strong password and keeping your device updated, an attacker has to work very hard to access your camera data.  If we look at the alternative where your footage is stored in the cloud, and it becomes subject to a security breach, now your camera’s video content is collateral damage.  Large corporations are specifically targeted by cybercriminals because they provide a high ROI for the time spent on the attack; an individual practicing good cybersecurity hygiene becomes a much more difficult target providing less incentive for the attacker, thus becoming a less likely target.
  • Is the camera on the same network as the rest of your home? An often-overlooked security implication to many IoT devices, but especially cameras, is outside of the threat of spying, but rather the threat of a network entry point. If the camera itself is compromised it can be used as a pivot point to attack other devices on your network.  A simple way to reduce this risk is to utilize the “guest” network feature that comes by default on almost all home routers.   These guest networks are preset to be isolated from your main network and generally require little to no setup.  By simply attaching your cameras to your guest network, you can reduce the risk of a compromised camera leading a cybercriminal to the banking info on your laptop.

Background checks – Not only for babysitters

Most parents, especially new ones, like to ensure that anyone that watches their children is thoroughly vetted.  There are a ton of services out there to do this for babysitters and nannies, however it’s not always as easy for vetting the companies that create the devices we put in our homes.  So how do we determine what is safe?  My father used to tell me: “It’s how we respond to our mistakes that makes the difference.”  When researching a company or device, should you find that the device has been found to have a vulnerability, often the response time and accountability from the vendor can tell you if it’s a company you should be investing in. Some things to look for include:

  • Was the vulnerability quickly patched?
  • Are there unpatched bugs still?
  • Has a vendor self-reported flaws, fixed them and reported to the public they have been fixed?
  • Are there numerous outstanding bugs filed against a company or device?
  • Does the company not recognize the possibility of bugs in their products?

These answers can often be discovered on a company’s website or in release notes, which are generally attached to an update of a piece of software.   Take a minute to read the notes and see if the company is making security updates. You don’t need to understand all the details, just knowing they take security seriously enough to update frequently is important.  This can help tip the scales when deciding between devices or apps.

Remember, you can do this!

Through my preparation for becoming a new parent, I constantly read in books and was told by professionals, “Remember, you can do this!”  Cybersecurity in the context of being a parent is no different.  Every situation is different, and it is important to do what works with you and your family.  As parents, we shouldn’t be afraid to use all the cool new gadgets that are emerging on the market, but instead educate ourselves on how to limit our risk.  Which features do I need, which ones can I do without?   Remember always follow a vendor’s recommendations and best practices, and of course remember to breathe!

The post Two Pink Lines appeared first on McAfee Blogs.

A Year in Review: Threat Landscape for 2020

As we gratefully move forward into the year 2021, we have to recognise that 2020 was as tumultuous in the digital realm as it has in the physical world. From low level fraudsters leveraging the pandemic as a vehicle to trick victims into parting with money for non-existent PPE, to more capable actors using malware that has considerably less prevalence in targeted campaigns. All of which has been played out at a time of immense personal and professional difficulties for millions of us across the world.

Dealing with the noise

What started as a trickle of phishing campaigns and the occasional malicious app quickly turned to thousands of malicious URLs and more-than-capable threat actors leveraging our thirst for more information as an entry mechanism into systems across the world. There is no question that COVID was the dominant theme of threats for the year, and whilst the natural inclination will be to focus entirely on such threats it is important to recognise that there were also very capable actors operating during this time.

For the first time we made available a COVID-19 dashboard to complement our threat report to track the number of malicious files leveraging COVID as a potential lure.  What this allows is real time information on the prevalence of such campaigns, but also clarity about the most targeted sectors and geographies.  Looking at the statistics from the year clearly demonstrates that the overarching theme is that the volume of malicious content increased.

Whilst of course this a major concern, we must recognise that there were also more capable threat actors operating during this time.

Ransomware – A boom time

The latter part of 2020 saw headlines about increasing ransom demands and continued successes from ransomware groups. An indication as to the reason why was provided in early 2020 in a blog published by Thomas Roccia that revealed “The number of RDP ports exposed to the Internet has grown quickly, from roughly three million in January 2020 to more than four and a half million in March.”

With RDP a common entry vector used predominantly by post intrusion ransomware gangs, there appears some explanation as to the reason why we are seeing more victims in the latter part of 2020.   Indeed, in the same analysis from Thomas we find that the most common passwords deployed for RDP are hardly what we would regard as strong.

If we consider the broader landscape of RDP being more prevalent (we have to assume due to the immediate need for remote access due to the lockdowns across the globe), the use of weak credentials, then the success of ransomware groups become very evident.  Indeed, later in the year we detailed our research into the Netwalker ransomware group that reveals the innovation, affiliate recruitment and ultimately financial success they were able to gain during the second quarter of 2020.

A year of major vulnerabilities

The year also provided us with the added gifts of major vulnerabilities. In August, for example, there was a series of zero-day vulnerabilities in a widely used, low-level TCP/IP software library developed by Treck, Inc.  Known as Ripple 20, the affect to hundreds of millions of devices resulted in considerable concern related to the wider supply chain of devices that we depend upon. In collaboration with JSOF, the McAfee ATR team developed a Detection Logic and Signatures for organizations to detect these vulnerabilities.

Of course the big vulnerabilities did not end there; we had the pleasure of meeting BadNeighbour, Drovorub, and so many more. The almost seemingly endless stream of vulnerabilities with particularly high CVSS Scores has meant that the need to patch very high on the list of priorities.

The ‘sophisticated’ attacker

As we closed out 2020, we were presented with details of ‘nation states’ carrying out sophisticated attacks.   Whilst under normal circumstances such terminology is something that should be avoided, there is no question that the level of capability we witness from certain threat campaigns are a world away from the noisy COVID phishing scams.

In August of 2020, we released the MVISION Insights dashboard which provides a free top list of campaigns each week. This includes, most recently, tracking against the SUNBURST trojan detailed in the SolarWinds attack, or the tools stolen in the FireEye breach.   What this demonstrates is that whilst prevalence is a key talking point, there exists capable threat actors targeting organizations with real precision.

For example, the Operation North Star campaign in which the threat actors deployed an Allow and Block list of targets in order to limit those they would infect with a secondary implant.

The term sophisticated is overused, and attribution is often too quickly relegated to the category of nation state.  However, the revelations have demonstrated that there are those campaigns where the attack did use capabilities not altogether common and we are no doubt witnessing a level of innovation from threat groups that is making the challenge of defence harder.

What is clear is that 2020 was a challenging year, but as we try and conclude what 2021 has in store, we have to celebrate the good news stories.   From initiatives such as No More Ransom continuing to tackle ransomware, to the unprecedented accessibility of tools that we can all use to protect ourselves (e.g. please check ATR GitHub repo, but recognise there are more).

McAfee 2021 Threat Predictions

Our experts share their 2021 predictions for the new year and how to protect yourself and your enterprise.

Read Now

 

The post A Year in Review: Threat Landscape for 2020 appeared first on McAfee Blogs.

2021 Threat Predictions Report

The Year 2020 brought a historic pandemic and bad actors leveraging COVID-19-themed threats to test our security operations and our unprecedented shift to a remote work life. As we enter 2021, these concerns are still at the forefront, but we are also looking ahead to other cyber threats likely to confront us in the months and years ahead.  

The December 2020 revelations around the SUNBURST campaigns exploiting the SolarWinds Orion platform have revealed a new attack vector – the supply chain – that will continue to be exploited.   

The ever-increasing use of connected devices, apps and web services in our homes will also make us more susceptible to digital home break-ins. This threat is compounded by many individuals continuing to work from home, meaning this threat not only impacts the consumer and their families, but enterprises as well.   

Attacks on cloud platforms and users will evolve into a highly polarized state where they are either “mechanized and widespread” or “sophisticated and precisely handcrafted”. 

Mobile users will need to beware of phishing or smishing messages aimed at exploiting and defrauding them through mobile payment services. 

The use of QR codes has notably accelerated during the pandemic, raising the specter of a new generation of social engineering techniques that seek to exploit consumers and gain access to their personal data. 

Finally, the most sophisticated threat actors will increasingly use social networks to target high value individuals working in sensitive industry sectors and roles 

A new year offers hope and opportunities for consumers and enterprises, but also more cybersecurity challenges. I hope you find these helpful in planning your 2021 security strategies. 

–Raj Samani, Chief Scientist and McAfee Fellow, Advanced Threat Research 

Twitter @Raj_Samani 

2021 Predictions  

1.

Supply Chain Backdoor Techniques to Proliferate 

By Steve Grobman 

The revelations around the SolarWinds-SUNBURST espionage campaign will spark a proliferation in copycat supply chain attacks of this kind 

On December 13, 2020, the cybersecurity industry learned nation-state threat actors had compromised SolarWinds’s Orion IT monitoring and management software and used it to distribute a malicious software backdoor called SUNBURST to dozens of that company’s customers, including several high-profile U.S. government agencies.  

This SolarWinds-SUNBURST campaign is the first major supply chain attack of its kind and has been referred to by many as the “Cyber Pearl Harbor” that U.S. cybersecurity experts have been predicting for a decade and a half 

The campaign also represents a shift in tactics where nation state threat actors have employed a new weapon for cyber-espionage.  Just as the use of nuclear weapons at the end of WWII changed military strategy for the next 75 years, the use of a supply chain attack has changed the way we need to consider defense against cyber-attacks.   

This supply chain attack operated at the scale of a worm such as WannaCry in 2017, combined with the precision and lethality of the 2014 Sony Pictures or 2015 U.S. government Office of Personnel Management (OPM) attacks. 

Within hours of its discovery, the magnitude of the campaign became frighteningly clear to organizations responsible for U.S. national security, economic competitiveness, and even consumer privacy and security.  

It enables U.S. adversaries to steal all manners of information, from inter-governmental communications to national secrets. Attackers can, in turn, leverage this information to influence or impact U.S. policy through malicious leaks.  Every breached agency may have different secondary cyber backdoors planted, meaning that there is no single recipe to evict the intrusion across the federal government. 

While some may argue that government agencies are legitimate targets for nation-state spy craftthe campaign also impacted private companies. Unlike government networks which store classified information on isolated networks, private organizations often have critical intellectual property on networks with access to the internet.  Exactly what intellectual property or private data on employees has been stolen will be difficult to determine, and the full extent of the theft may never be known.  

This type of attack also poses a threat to individuals and their families given that in today’s highly interconnected homes, a breach of consumer electronics companies can result in attackers using their access to smart appliances such as TVs, virtual assistants, and smart phones to steal their information or act as a gateway to attack businesses while users are working remotely from home. 

What makes this type of attack so dangerous is that it uses trusted software to bypass cyber defensesinfiltrate victim organizations with the backdoor and allow the attacker to take any number of secondary steps. This could involve stealing data, destroying data, holding critical systems for ransom, orchestrating system malfunctions that result in kinetic damage, or simply implanting additional malicious content throughout the organization to stay in control even after the initial threat appears to have passed. 

McAfee believes the discovery of the SolarWinds-SUNBURST campaign will expose attack techniques that other malicious actors around the world will seek to duplicate in 2021 and beyond. 

 

2.

Hacking the Home to Hack the Office 

By Suhail Ansari, Dattatraya Kulkarni and Steve Povolny 

 The increasingly dense overlay of numerous connected devices, apps and web services used in our professional and private lives will grow the connected home’s attack surface to the point that it raises significant new risks for individuals and their employers. 

 While the threat to connected homes is not new, what is new is the emergence of increased functionality in both home and business devices, and the fact that these devices connect to each other more than ever before. Compounding this is the increase in remote work – meaning many of us are using these connected devices more than ever.  

In 2020, the global pandemic shifted employees from the office to the home, making the home environment a work environmentIn fact, since the onset of the coronavirus pandemic, McAfee Secure Home Platform device monitoring shows a 22% increase in the number of connected home devices globally and a 60% increase in the U.S. Over 70% of the traffic from these devices originated from smart phones, laptops, other PCs and TVs, and over 29% originated from IoT devices such as streaming devices, gaming consoles, wearables, and smart lights.  

McAfee saw cybercriminals increase their focus on the home attack surface with a surge in various phishing message schemes across communications channels. The number of malicious phishing links McAfee blocked grew over 21% from March to Novemberat an average of over 400 links per home.  

 This increase is significant and suggests a flood of phishing messages with malicious links entered home networks through devices with weaker security measures 

 Millions of individual employees have become responsible for their employer’s IT security in a home office filled with soft targetsunprotected devices from the kitchen, to the family room, to the bedroomMany of these home devices are “orphaned” in that their manufacturers fail to properly support them with security updates addressing new threats or vulnerabilities.  

This contrasts with a corporate office environment filled with devices “hardened” by enterprise-grade security measures. We now work with consumer-grade networking equipment configured by “us” and lacking the central management, regular software updates and security monitoring of the enterprise.   

Because of this, we believe cybercriminals will advance the home as an attack surface for campaigns targeting not only our families but also corporations. The hackers will take advantage of the home’s lack of regular firmware updates, lack of security mitigation features, weak privacy policies, vulnerability exploits, and user susceptibility to social engineering.  

By compromising the home environment, these malicious actors will launch a variety of attacks on corporate as well as consumer devices in 2021. 

 

3.

Attacks on Cloud Platforms Become Highly Mechanized and Handcrafted 

By Sandeep Chandana  

Attacks on cloud platforms will evolve into a highly polarized state where they are either “mechanized and widespread” or “targeted and precisely handcrafted”.  

The COVID-19 pandemic has also hastened the pace of the corporate IT transition to the cloudaccelerating the potential for new corporate cloud-related attack schemesWith increased cloud adoption and the large number of enterprises working from home, not only is there a growing number of cloud users but also a lot more data both in motion and being transacted.  

 McAfee cloud usage data from more than 30 million McAfee MVISION Cloud users worldwide shows a 50% increase overall in enterprise cloud use across all industries the first four months of 2020. Our analysis showed an increase across all cloud categories, usage of collaboration services such as Microsoft O365 by 123%, increase in use of business services such as Salesforce by 61% and the largest growth in collaboration services such as Cisco Webex (600%), Zoom (+350%), Microsoft Teams (+300%), and Slack (+200%). From January to April 2020, corporate cloud traffic from unmanaged devices increased 100% across all verticals.  

 During the same period, McAfee witnessed a surge in attacks on cloud accounts, an estimated 630% increase overall, with variations in the sectors that were targeted. Transportation led vertical industries with a 1,350% increase in cloud attacks, followed by education (+1,114%), government (+773%), manufacturing (+679%), financial services (+571%) and energy and utilities (+472%).  

 The increasing proportion of unmanaged devices accessing the enterprise cloud has effectively made home networks an extension of the enterprise infrastructure. Cybercriminals will develop new, highly mechanizedwidespread attacks for better efficacy against thousands of heterogenous home networks.  

 One example could be a widespread brute force attack against O365 users, where the attacker seeks to leverage stolen credentials and exploit users poor practice of re-using passwords across different platforms and applications. As many as 65% of users reuse the same password for multiple or all accounts according to a 2019 security survey conducted by Google. Where an attacker would traditionally need to manually encode first and last name combinations to find valid usernames, a learning algorithm could be used to predict O365 username patterns.  

 Additionally, cybercriminals could use AI and ML to bypass traditional network filtering technologies deployed to protect cloud instances. Instead of launching a classic brute force attack from compromised IPs until the IPs are blocked, resource optimization algorithms will be used to make sure the compromised IPs launch attacks against multiple services and sectors, to maximize the lifespan of compromised IPs used for the attacks. Distributed algorithms and reinforcement learning will be leveraged to identify attack plans primarily focused on avoiding account lockouts.   

McAfee also predicts that, as enterprise cloud security postures mature, attackers will be forced to handcraft highly targeted exploits for specific enterprises, users and applications.  

The recent Capital One breach was an example of an advanced attack of this kind. The attack was thoroughly cloud-native. It was sophisticated and intricate in that a number of vulnerabilities and misconfigurations across cloud applications (and infrastructure) were exploited and chained. It was not a matter of chance that the hackers were successful, as the attack was very well hand-crafted.  

 We believe attackers will start leveraging threat surfaces across devices, networks and the cloud in these ways in the months and years ahead. 

4.

New Mobile Payment Scams

By Suhail Ansari and Dattatraya Kulkarni 

As users become more and more reliant on mobile payments, cybercriminals will increasingly seek to exploit and defraud users with scam SMS phishing or smishing messages containing malicious payment URLs.  

 Mobile payments have become more and more popular as a convenient mechanism to conduct transactions. Worldpay Global Payments Report for 2020 estimated that 41% of payments today are on mobile devices, and this number looks to increase  at the expense of traditional credit and debit cards by 2023. An October 2020 study by Allied Market Research found that the global mobile payment market size was valued at $1.48 trillion in 2019, and is projected to reach $12.06 trillion by 2027, growing at a compound annual growth rate of 30.1% from 2020 to 2027.  

Additionally, the COVID-19 pandemic has driven the adoption of mobile payment methods higher as consumers have sought to avoid contact-based payments such as cash or physical credit cards.  

 But fraudsters have followed the money to mobile, pivoting from PC browsers and credit cards to mobile payments. According to research by RSA’s Fraud and Risk Intelligence team72% of cyber fraud activity involved the mobile channel in the fourth quarter of 2019. The researchers observed that this represented the highest percentage of fraud involving mobile apps in nearly two years and underscores a broader shift away from fraud involving web browsers on PCs. 

McAfee predicts there will be an increase in “receive”-based mobile payment exploits, where a user receives a phishing email, direct message or smishing message telling him that he can receive a paymenttransaction refund or cash prize by clicking on a malicious payment URL. Instead of receiving a payment, however, the user has been conned into sending a payment from his account.  

This could take shape in schemes where fraudsters set up a fake call center using a product return and servicing scam, where the actors send a link via email or SMS, offering a refund via a mobile payment app, but the user is unaware that they are agreeing to pay versus receiving a refund. The figures below show the fraudulent schemes in action.  

Mobile wallets are making efforts to make it easier for users to understand whether they are paying or receiving. Unfortunately, as the payment methods proliferate, fraudsters succeed in finding victims who either cannot distinguish credit from debit or can be prompted into quick action by smart social engineering.  

Governments and banks are making painstaking efforts to educate users to understand the use of one-time passwords (OTPs) and that they should not be shared. Adoption of frameworks such as caller ID authentication (also known as STIR/SHAKEN) help in ensuring that the caller ID is not masked by fraudsters, but they do not prevent a fraudster from registering an entity that has a name close to the genuine provider of service. 

In the same way that mobile apps have simplified the ability to conduct transactions, McAfee predicts the technology is making it easier to take advantage of the convenience for fraudulent purposes. 

5.

Qshing: QR Code Abuse in the Age of COVID 

By Suhail Ansari and Dattatraya Kulkarni 

Cybercriminals will seek new and ever cleverer ways to use social engineering and QR Code practices to gain access to consumer victims’ personal data. 

The global pandemic has created the need for all of us to operate and transact in all areas of our lives in a “contactless” way. Accordingly, it should come as no surprise that QR codes have emerged as a convenient input mechanism to make mobile transactions more efficient.  

QR code usage has proliferated into many areas, including payments, product marketing, packaging, restaurants, retail, and recreation just to name a few. QR codes are helping limit direct contact between businesses and consumers in every setting from restaurants to personal care salons, to fitness studios. They allow them to easily scan the code, shop for services or items offered, and easily purchase them.  

September 2020 survey by MobileIron found that 86% of respondents scanned a QR code over the course of the previous year and over half (54%) reported an increase in the use of such codes since the pandemic began. Respondents felt most secure using QR codes at restaurants or bars (46%) and retailers (38%). Two-thirds (67%) believe that the technology makes life easier in a touchless world and over half (58%) wish to see it used more broadly in the future.  

In just the area of discount coupons, an estimated 1.7 billion coupons using QR codes were scanned globally in 2017, and that number is expected to increase by a factor of three to 5.3 billion by 2022In just four years, from 2014 to 2018, the use of QR codes on consumer product packaging in Korea and Japan increased by 83%The use of QR codes in such “smart” packaging is increasing at an annual rate of 8% globally.  

In India, the governments Unique Identification Authority of India (UIDAI) uses QR codes in association with Aadhaar, India’s unique ID number, to enable readers to download citizens’ demographic information as well as their photographs. 

However, the technicalities of QR codes are something of a mystery to most users, and that makes them potentially dangerous if cybercriminals seek to exploit them to target victims.  

The MobileIron report found that whereas 69% of respondents believe they can distinguish a malicious URL based on its familiar text-based format, only 37% believe they can distinguish a malicious QR code using its unique dot pattern formatGiven that QR codes are designed precisely to hide the text of the URL, users find it difficult to identify and even suspect malicious QR codes. 

Almost two-thirds (61%) of respondents know that QR codes can open a URL and almost half (49%) know that a QR code can download an application. But fewer than one-third (31%) realize that a QR code can make a payment, cause a user to follow someone on social media (22%), or start a phone call (21%). A quarter of respondents admit scanning a QR code that did something unexpected (such as take them to a suspicious website), and 16% admitted that they were unsure if a QR code actually did what it was intended to do. 

It is therefore no surprise that QR codes have been used in phishing schemes to avoid anti-phishing solutions’ attempts to identify malicious URLs within email messagesThey can also be used on webpages or social media.  

In such schemes, victims scan fraudulent QRs and find themselves taken to malicious websites where they are asked to provide login, personal info, usernames and passwords, and payment information, which criminals then steal. The sites could also be used to simply download malicious programs onto a user’s device.  

McAfee predicts that hackers will increasingly use these QR code schemes and broaden them using social engineering techniques. For instance, knowing that business owners are looking to download QR code generator apps, bad actors will entice consumers into downloading malicious QR code generator apps that pretend to do the same. In the process of generating the QR code (or even pretending to be generating the correct QR code), the malicious apps will steal the victim’s sensitive data, which scammers could then use for a variety of fraudulent purposes.  

Although the QR codes themselves are a secure and convenient mechanism, we expect them to be misused by bad actors in 2021 and beyond. 

6.

Social Networks as Workplace Attack Vectors  

By Raj Samani 

McAfee predicts that sophisticated cyber adversaries will increasingly target, engage and compromise corporate victims using social networks as an attack vector.  

Cyber adversaries have traditionally relied heavily on phishing emails as an attack vector for compromising organizations through individual employees. However, as organizations have implemented spam detection, data loss prevention (DLP) and other solutions to prevent phishing attempts on corporate email accounts, more sophisticated adversaries are pivoting to target employees through social networking platforms to which these increasingly effective defenses cannot be applied. 

McAfee has observed such threat actors increasingly using the messaging features of LinkedIn, What’s App, Facebook and Twitter to engage, develop relationships with and then compromise corporate employees. Through these victims, adversaries compromise the broader enterprises that employ them. McAfee predicts that such actors will seek to broaden the use of this attack vector in 2021 and beyond for a variety of reasons.  

Malicious actors have used the social network platforms in broad scoped schemes to perpetrate relatively low-level criminal scams. However, prominent actors such as APT34Charming Kitten, and Threat Group-2889 (among others) have been identified using these platforms for higher-value, more targeted campaigns on the strength of the medium’s capacity for enabling customized content for specific types of victims.  

Operation North Star demonstrates state-of-the-art attack of this kind. Discovered and exposed by McAfee in August 2020, the campaign showed how lax social media privacy controls, ease of development and use of fake LinkedIn user accounts and job descriptions could be used to lure and attack defense sector employees. 

Just as individuals and organizations engage potential consumer customers on social platforms by gathering information, developing specialized content, and conducting targeted interactions with customers, malicious actors can similarly use these platform attributes to target high value employees with a deeper level of engagement.  

Additionally, individual employees engage with social networks in a capacity that straddles both their professional and personal lives. While enterprises assert security controls over corporate-issued devices and place restrictions on how consumer devices access corporate IT assets, user activity on social network platforms is not monitored or controlled in the same way. As mentioned, LinkedIn and Twitter direct messaging will not be the only vectors of concern for the corporate security operations center (SOC). 

While it is unlikely that email will ever be replaced as an attack vector, McAfee foresees this social network platform vector becoming more common in 2021 and beyond, particularly among the most advanced actors. 

 

The post 2021 Threat Predictions Report appeared first on McAfee Blogs.

How A Device to Cloud Architecture Defends Against the SolarWinds Supply Chain Compromise

In a blog post released 13 Dec 2020, FireEye disclosed that threat actors compromised SolarWinds’s Orion IT monitoring and management software with a trojanized version of SoalrWinds.Orion.Core.BusinessLayer.dll delivered as part of a digitally-signed Windows Installer Patch. The trojanized file delivers a backdoor, dubbed SUNBURST by FireEye (and Solorigate by Microsoft), that communicates to third-party servers for command and control and malicious file transfer giving the attacker a foothold on the affected system with elevated privileges. From there, additional actions on the objective, such as lateral movement and data exfiltration, are possible. Since release of the initial blog from FireEye, subsequent additional analysis by McAfee and the industry as well as alerts by CISA, we have seen the attack grow in size, breadth and complexity. We will continue to update defensive recommendation blogs like this as new details emerge.

The use of a compromised software supply chain as an Initial Access technique (T1195.002) is particularly dangerous as the attack uses assumed trusted paths and as such can go undetected for a long period. This attack leveraged several techniques, such as trusted software, signed code and stealthy hiding-in-plain-sight communication, allowing the attacker to evade even strong defenses and enjoy a long dwell before detection. The sophisticated nature of the attack suggests that an Advanced Persistent Threat (APT) Group is likely responsible. In fact, FireEye is tracking the group as UNC2452 and has released countermeasures to identify the initial SUNBURST backdoor. McAfee has also provided an intelligence summary within MVISION Insights and mitigation controls for the initial entry vectors are published in KB93861. For additional response actions, please view Part One of this blog series here. If you are using SolarWinds software, please refer to the company guidance here to check for vulnerable versions and patch information.

However, looking beyond the initial entry and containment actions, you should think about how you are prepared for this type of attack in the future. This is a sophisticated actor(s) who may use other techniques such as Spearphishing to gain access, then move around the corporate network and potentially steal intellectual property as was the case with FireEye. They will change techniques and tools, so you need to be ready. Our Advanced Threat Research team tracks over 700 APT and Cyber Crime campaigns so the potential for another threat actor to launch a similar attack is high. In this blog, we will take a specific look at the techniques used in the SolarWinds compromise and provide some guidance on how McAfee solutions could help you respond now and prepare for this type of threat in the future with an adaptable security capability for resilience.

Attack Chain Overview

In our first blog in this series, we provided some initial response guidance designed to disrupt the attack early in the Execution phase or look retrospectively on the endpoints or proxy logs for indicators of compromise. But as you can see in the attack timeline below, it started much earlier with purposeful and detailed preparation and includes multiple other steps. A couple of techniques speak volumes about the sophistication and planning involved in this campaign.

Figure 1: SUNBURST Attack Progression

First is the choice of entry vector. The attacker in this case compromised part of the software supply chain by weaponizing software by SolarWinds, a major brand of IT management software. While software supply chain compromises are not new, like the recent one affecting JavaScript, they are typically on a smaller scale or more quickly detected. More common initial access techniques involve Spearphishing or taking advantage of open remote services like RDP. While both take planning and effort, weaponizing software from a major technology company and going undetected in that process is no easy feat. Secondly, the calculated wait time before external communication and the custom Domain Generation Algorithm (DGA) indicate the attacker has a lot of patience and stealth capability. For more detailed analysis of these advanced techniques, see McAfee Labs additional analysis blog on the SUNBURST backdoor.

The attack also involves numerous post-exploitation actions such as command and control communication masquerading (T1001.003) as normal update traffic, additional payload transfers (T1105), system discovery, credential harvesting and potentially then movement to other systems, even cloud-hosted infrastructure systems. The goal of course is to disrupt or detect any stage of attack before the breakout point and hopefully before any real impact to the business. The breakout point is when an attacker has gained privileges and starts to move laterally within the business. At that point, it becomes very difficult but not impossible to disrupt or detect the activity. But you must act fast. The impact of the attack can vary. In one case, it could be loss of intellectual property, but in another case, destruction of critical systems or data could be the goal. Also, what if the attacker used other initial access techniques, such as Spearphishing (T1566), to deliver a similar backdoor? Would you be able to detect that activity or any of the follow actions? Our point is don’t just update the endpoint with the latest DAT and consider yourself secure. Look for other ways to disrupt or detect an attack throughout the whole attack chain, leveraging both prevention and detection capability and keeping the end goal in mind to reduce impact to the business. Also think about how you prepare. The attackers in this case spent a lot of time in preparation creating custom malware and infrastructure. How about your organization? Do you know what attackers might be targeting your organization? Do you know their tactics and techniques?

Staying Ahead with MVISION Insights

In the first hours of a new threat campaign, if the CIO or CISO asked you, “are we exposed to SUNBURST”, how long would it take you to answer that question? One place to turn is MVISION Insights. MVISION Insights combines McAfee’s Threat Intelligence research with telemetry from your endpoint controls to reduce your attack surface against emerging threats. MVISION Insights tracks over 700 APT and Cyber Crime campaigns as researched by McAfee’s ATR team, including the most recent, FireEye Red Team tool release and SolarWinds Supply Chain Compromise campaigns.

Figure 2: Getting details on the attack

In the beginning hours of a new threat response, you can use MVISION Insights to get a quick summary of the threat, view external resources, and a list of known indicators such as files, URLs, or IP addresses. The campaign summary saves you from some of the time-consuming task of combing multiple sites, downloading reports, and building out the broader picture. MVISION Insights provides critical pieces in one place allowing you to move quicker through the response process. The next question to answer, is this new attack a risk to my business? Insights can help you answer that question as well when you click on “Your Environment”.

Figure 3: Quick review of your exposure

Insights automatically correlates the indicators of compromise with Threat Events from McAfee ENS, allowing you to quickly asses if there is an immediate problem now. If you had a detection, you should immediately go to incident response. Insights reviews your endpoint control configuration to asses if you have the right content update deployed to potentially disrupt the threat. At this point, you are closer to answer the CIO question of “are we exposed”. I say closer because Insights provides only the endpoint protection view currently so you will need to review other controls you have in place to fully assess risk.

Figure 4: Detail review of your exposure

However, Insights also assesses your endpoint security posture against other advanced threat techniques, looking to see if you are getting the best value from ENS by leveraging signature, intelligence and behavior anomaly detection capability in the solution. This is important because the attackers will change tactics, using new entry techniques and tools, so your security posture must continuously adapt. And this is just one campaign. Insights is summarizing intelligence, surfacing detections and reducing your attack surface continuously, against 700 campaigns!

Review your Defensive Architecture

Mitigating risk from SUNBURST and similar sophisticated APT campaigns requires a security architecture that provides defense in depth and visibility throughout the entire attack chain. You should review your architecture and assess gaps either in technique visibility or protection capability. Below we have outlined where McAfee and partner solutions could be used to either disrupt or detect some of the attack techniques used in SUNBURST based on what we know today.

Figure 5:  Device to Cloud Security Architecture

While the attacker is no doubt sophisticated and stealthy, the multi-stage aspect of the attack presents opportunities to detect or stop at multiple points and perhaps even before the attack gains a foothold. We cover more about how to use McAfee EDR to search for or detect some of the techniques used in SUNBURST in next section. However, there are some other key cyber defense capabilities that may be overlooked in your organizations but are critical to having a chance at detection and mitigation. We highlight those in this section below.

Getting inside the attacker’s preparation

Normally this is beyond what most organizations have time to do. However, in this case, you need to gain any advantage. We discussed MVISION Insights above so here we will cover additional guidance. During the preparation phase of this attack, the attacker obtains infrastructure within the target geo to host their command and control server. During this phase, they also set the hostnames of their C2 servers to mimic target organization hostnames. A scan for your domain names on external IP blocks can reveal the attack formation. Open source tools such as Spiderfoot offer a number of plugins to gather and analyze such types of data. Passive DNS with combination of hosts communicating with unusual domain names also represent a window of detection whereby Advanced DNS Protection solutions such as from our SIA partner Infoblox can detect behavior-based DGA usage by malware and automatically block such DNS resolution requests.

Visibility on DNS

DNS queries often provide the first layers of insights into any type of C2 communication and data exfiltration. You should enable logging ideally at an upstream resolver(s) where you can see traffic from your entire infrastructure. More information can be found here for Windows DNS Servers and Linux Bind DNS Servers.  This could be forwarded to McAfee ESM/other SIEMs for analysis and correlation for detection of DGA-type activities.

NetFlow Logging

Being able to detect unusual flows should also be a priority for incident responders. Along with DNS queries, NetFlow data when combined with UBA provides a great source of detection, as the attackers’ use of VPS providers can be combined with user login data to detect an “impossible rate of travel event.”

Hunting for Indicators with MVISION EDR

As described in the defensive architecture, MVISION EDR plays a vital role in hunting for prevalence of indicators related to the SUNBURST backdoor and ensuing post compromise activity. The role of MVISION EDR becomes even more important due to the usage of manual OPSEC by the threat actor where what follows the initial breach is driven by how the threat actor is targeting the organisation.

Hunting for Presence of Malicious Files

You can use MVISION EDR or MAR to search endpoints for SUNBURST indicators as provided by Microsoft and FireEye. If you are licensed for MVISION Insights, you can pivot directly to MVISION EDR to search for indicators. MVISION EDR supports real-time searches to hunt for presence of files on the endpoints and allows for sweeps across the estate. The following query can be used with the pre-populated malicious file hash list. The presence of the file on the system is itself does not mean it was successful and further hunting to check for execution of the actual malicious code on the system.is needed. See the search syntax below.

 

Begin MVEDR Query Syntax…

Files name, full_name, md5, sha256, created_at, create_user_name, create_user_domain and HostInfo hostname, ip_address, os and LoggedInUsers username, userdomain where Files sha256 equals “ac1b2b89e60707a20e9eb1ca480bc3410ead40643b386d624c5d21b47c02917c” or Files sha256 equals “c09040d35630d75dfef0f804f320f8b3d16a481071076918e9b236a321c1ea77” or Files sha256 equals “eb6fab5a2964c5817fb239a7a5079cabca0a00464fb3e07155f28b0a57a2c0ed” or Files sha256 equals “dab758bf98d9b36fa057a66cd0284737abf89857b73ca89280267ee7caf62f3b” or Files sha256 equals “32519685c0b422e4656de6e6c41878e95fd95026267daab4215ee59c107d6c77” or Files sha256 equals “d0d626deb3f9484e649294a8dfa814c5568f846d5aa02d4cdad5d041a29d5600” or Files sha256 equals “53f8dfc65169ccda021b72a62e0c22a4db7c4077f002fa742717d41b3c40f2c7” or Files sha256 equals “019085a76ba7126fff22770d71bd901c325fc68ac55aa743327984e89f4b0134” or Files sha256 equals “ce77d116a074dab7a22a0fd4f2c1ab475f16eec42e1ded3c0b0aa8211fe858d6” or Files sha256 equals “32519b85c0b422e4656de6e6c41878e95fd95026267daab4215ee59c107d6c77” or Files sha256 equals “292327e5c94afa352cc5a02ca273df543f2020d0e76368ff96c84f4e90778712” or Files sha256 equals “c15abaf51e78ca56c0376522d699c978217bf041a3bd3c71d09193efa5717c71”

 

…End MVEDR Query Syntax

Figure 6: Real Time Search for indicators

Additionally, you can do a historical search creation and deletion of files going back up to 90 days in cloud storage.

Figure 7: Historical Search and Modification of Files

The threat actor is known to rename system utilities/files and clean up their tracks. MVISION EDR can review historical changes to the file system, this is crucial in determining if an endpoint was a victim of this attack. The flexible search interface can be used to filter down and track the progress of the completion of the attacker’s objectives for e.g. look at changes triggered from the infected dll’s such as netsetupsvc.dll.

Hunting for Malicious Network Connections

MVISION EDR allows for tracing of active network connections leveraging the real time search functionalities

 

Figure 8: Realtime Network Connections

You can also leverage the historical search function to look for historical connections related to the command and control activity for this threat actor. The filtering by process ID and source/destination IP allows analysts to track down the malicious communications.

Figure 9: Historical Network Connections

MVISION EDR also allows analysts to review historical DNS lookups thus allowing for the ability to hunt for malicious DNS lookups. This is a very important capability in the product as many organizations do not log DNS or have a DNS hierarchy that makes it harder to log the end device making the actual request.

Figure 10: Historical DNS Searches

Hunting for Malicious Named Pipes Across the Estate

MVISION EDR includes custom collector creation ability that allows for execution of custom commands across the estate. In this case, it’s possible to look for the existence of the Named Pipes by executing the following Powershell command:

Figure 11: EDR Named Pipe Collector

Powershell Command for Pipe detection [System.IO.Directory]::GetFiles(“\\.\\pipe\\”) | %{($_ -split “\\”)[6]}

Figure 12: Realtime Search for Named Pipe

HostInfo hostname, ip_address, os where _NamedPipe pipename contains “583da945-62af-10e8-4902-a8f2 05c72b2e”

Hunting for Malicious Processes

It is known the attacker in its final stages leverages legitimate SolarWinds processes to complete their objectives:

 

\Windows\SysWOW64\WerFault.exe

\SolarWinds\Orion\ExportToPDFCmd.Exe

\SolarWinds\Orion\APM\APMServiceControl.exe

\SolarWinds.Credentials\SolarWinds.Credentials.Orion.WebApi.exe

\SolarWinds\Orion\Topology\SolarWinds.Orion.Topology.Calculator.exe

\SolarWinds\Orion\Database-Maint.exe

 

ProcessHistory parentname, name, id, cmdline WHERE ProcessHistory parentname equals “WerFault.exe” or ProcessHistory parentname equals “ExportToPDFCmd.Exe” or ProcessHistory parentname equals “APMServiceControl.exe” or ProcessHistory parentname equals “SolarWinds.Credentials.Orion.WebApi.exe” or ProcessHistory parentname equals “SolarWinds.Orion.Topology.Calculator.exe” or ProcessHistory parentname equals “\SolarWinds\Orion\Database-Maint.exe”

Hunting back longer than 90 days with EDR Trace Data

MVISION EDR’s architecture leverages the Data Exchange Layer to stream trace data to our cloud service where we apply analytics to identify or investigate a threat. Trace data are artifacts from the endpoint, such as file hashes, processes, communications, typically needed for endpoint detection and searches. The DXL architecture allows that data to be streamed to the cloud as well to a local data store such as a SIEM or other log storage like Elastic simultaneously.

Figure 14: Long term search of EDR trace data in a Kibana dashboard

 

Figure 15: Long term search of EDR trace data in a Sp dashboard

You can store the data longer than the 90-day maximum McAfee stores in our cloud. Why is this important? Recent analysis of SUNBURST suggests that the attack goes as far back as March 2020, and perhaps earlier. This local storage would provide capability to hunt for indicators further back as needed, if so configured.

Assessing Visibility

How do you know what data sources are needed to detect Mitre Att&ck tactics and techniques? Carlos Diaz from MVISION EDR engineering wrote a great tool called Mitre-Assistant to simplify that process. You can download that tool here.

Detecting Actions on Objective

Post Initial Exploit Threat Detection and Analysis in EDR

One of the key challenges threat hunters and security analysts face is where the attack progresses through to the second phase of the attack, where it is understood the attacker has dropped malware to execute and complete their objectives. This usage of sophisticated execution of malware from a trusted process is detected by MVISION EDR and automatically mapped to the MITRE ATT&CK Framework. As part of the detection and process tracing, EDR also captures the command executed on the endpoint. This becomes invaluable in case of tracking the manual OPSEC aspect of the second phase of the attack.

Figure 16: Mitre analysis and threat detection for post exploit execution

MVISION EDR provides extensive capabilities to respond to threats once they have been assessed, e.g. real-time searches once executed allows analysts to scope the affected endpoints rapidly at which point the solution offers multiple options as a method for containment and remediation of the threat across the estate through bulk operations.

Figure 17: EDR Bulk Threat Mitigation

Detecting Data Exfiltration, Lateral Movement and Prevention

MVISION EDR provides a way to easily visualize data egress by looking at topology view of the endpoints where malicious activity has been detected, by observing the network-flow map the outlier connections can be easily identified and then correlated with WHOIS, IP reputation and Passive DNS data from providers like McAfee GTI and Virustotal. Once established, the external connections can be blocked and the endpoint can be quarantined from the EDR console. EDR also shows common processes spawning across multiple endpoints to showcase lateral movement and is also tagged as part of the MITRE techniques being identified and detected.

Figure 18: EDR Lateral Movement and Exfiltration

Combining EDR with Deception technology such as that from Attivo Networks brings together a combination of offensive detection where the attacker can be effectively trapped as result of not getting hold of the real credentials required to make the lateral movement/ privilege escalation a success thus failing in their objective completion.

An integrated approach to DLP can also provide effective protection against the completion of the objectives for e.g. unified DLP policy across the endpoint and web-gateway looking for exfiltration of sensitive organizational data can also provide valuable defenses. McAfee’s UCE platform provides such unified data protection capabilities.

Cloud account compromise detection

Our latest research indicates attacker is actively looking to establish additional footholds into customer cloud environments such as Azure AD or bypass multi-factor authentication by hijacking SAML sessions, McAfee’s MVISION Cloud Access Control and User Anomaly Detection can identify suspicious access attempts to cloud services and infrastructure.

It is recommended to increase monitoring and investigations into such activity especially with privileged accounts on sensitive infrastructure

Supply Chain and Intellectual Property Protection

In addition to architecture review and continuous hunting for indicators, it is recommended that customers work with their suppliers – IT, Cloud Services, Infrastructure, Hardware, etc. – to validate integrity. Secondly, review controls, detection use cases in the SOC and logs, specifically related to your intellectual property. A tabletop exercise to rehearse crisis management and breach notification procedures is also recommended.

Summary and Next Steps

It’s important to note that analysis of this attack is ongoing across the globe and events are still unfolding. The presence/detection of the backdoor and affected software is just the beginning for many customers. MVISION EDR or other tool detections of malicious named-pipe presence and domains help indicate to a customer if the backdoor was running, but with the gathered system information, the adversary may have valid accounts and access to AD or Cloud systems in some cases. The adversary has been wiping information/log files to erase traces. Incident Response is a critical piece of your overall business resilience and if you are affected, you will no doubt be asking yourself these types of questions.

  • When did we install the vulnerable software?
  • Did they compromise user-accounts and have AD access?
  • Did they install additional backdoors?
  • How many systems and accounts are affected?
  • Were cloud or enterprise resources accessed?
  • Was information stolen? If so, do we have notification procedures?
  • Are there other supply chain compromises yet undiscovered?

McAfee will continue to post analysis results and defensive guidance as we learn more about the attack. Customers should follow McAfee Labs posts, check the Insights Preview Dashboard for latest threat intelligence, and continually check the Knowledge Center for latest product guidance.

The post How A Device to Cloud Architecture Defends Against the SolarWinds Supply Chain Compromise appeared first on McAfee Blogs.